AMENDMENT 2

REQUEST FOR PROPOSALS UOG RFP No. P22-02

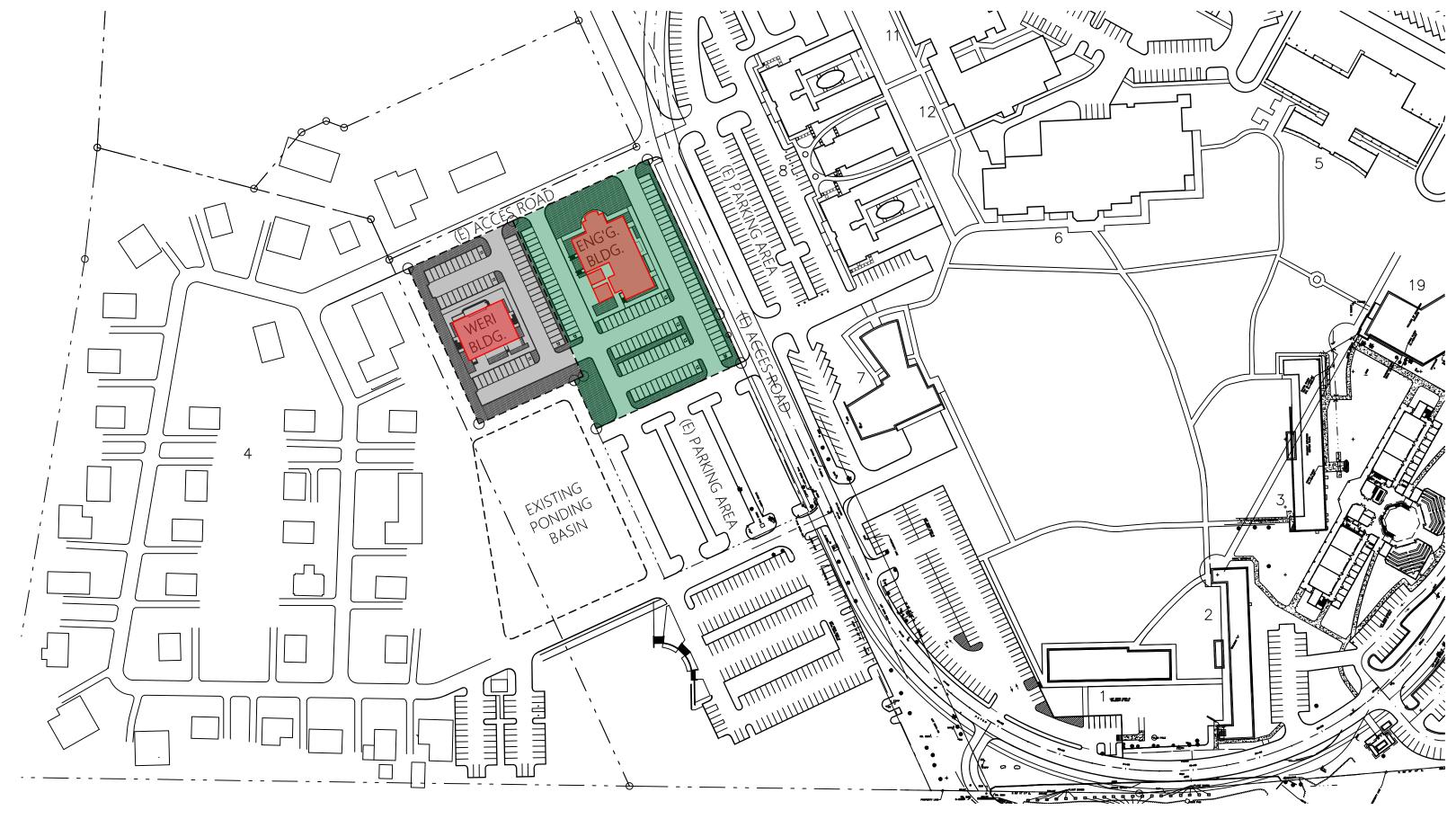
Date Issued: March 17, 2022

"DESIGN BUILD CONSTRUCTION SERVICES FOR A NEW SCHOOL OF ENGINEERING"

This is to notify all prospective offerors of the following amendment set forth below:

- 1.1 <u>ADD</u> ATTACHMENT 2-1 SITE DEVELOPMENT PLAN for the new SENG Site (near the future site of the new WERI facility being designed by RIM Architects) as EXHIBIT A set forth in the attached.
- 1.2 <u>ADD</u> ATTACHMENT 2-2 SURVEY TOPO provided by SSFM International as EXHIBIT B set forth in the attached.
- 1.3 <u>ADD</u> ATTACHMENT 2-3 EASEMENT OUTLINE on Survey Topo map provided by SSFM as EXHIBIT C set forth in the attached.
- 1.4 <u>ADD</u> ATTACHMENT 2-4 SOIL REPORT (March 9, 2022) provided by SSFM International as EXHIBIT D set forth in the attached.
- 1.5 Pre-Proposal Conference Minutes for reference as set forth in the attached.

All other terms and conditions remain the same.


Emily G. Gumataotao Supply Management Administrator

Please acknowledge receipt and return by email to uog.bids@triton.uog.edu:

Name of company: _____

Print Name/Signature/date

T: +1 671.735.2925 F: +1 671.734.3010 W: www.uog.edu E: uog.bids@triton.uog.edu Mailing Address: 303 University Drive UOG Station Mangilao, Guam 96913 The University of Guam is a U.S. Land Grant Institution accredited by the Western Association of Schools and Colleges Senior College and University Commission and is an equal opportunity provider and employer. Type text

SITE DEVELOPMENT PLAN_SCHEME 02

UOG ENGINEERING SCHOOL & WERI BUILDINGS | 17 NOVEMBER 2021

LOT AREA COMPUTATION:

ENG'G. BLDG. : 74,371 SF. WERI BLDG. : 43,082 SF.

Scale: 1/128" = 1'-0"

DESIGN PARTNERS

ENLARGED SITE DEVELOPMENT PLAN_SCHEME 02

219.00 FT

-

EXISTING PONDING BASIN JILDIN

108 Parking Spaces

235.00 Fi

E) PARKING AREA

- (E) ACCES ROAD

BLDG.

WERI

. 10.00 FT

54 Parking Spaces

253.00

20 FT. WIDE

EASEMENT

UOG ENGINEERING SCHOOL & WERI BUILDINGS | 17 NOVEMBER 2021

4

Scale: 1/64" = 1'-0"

DESIGN PARTNERS

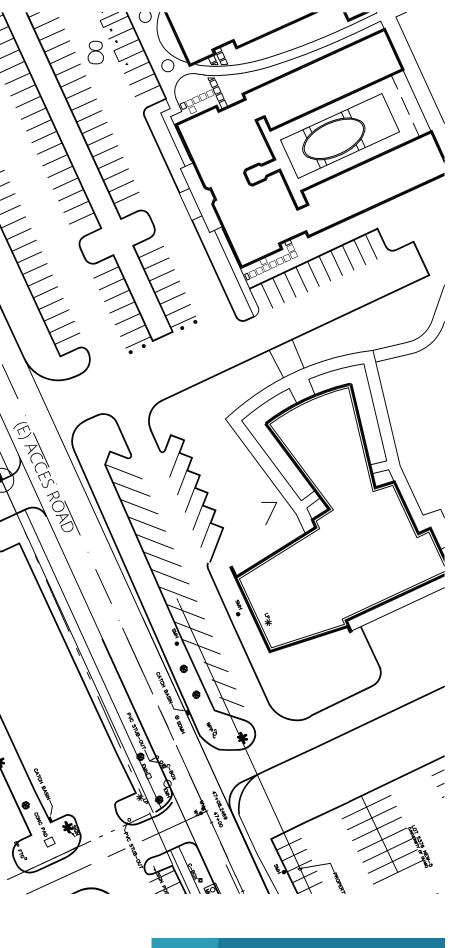
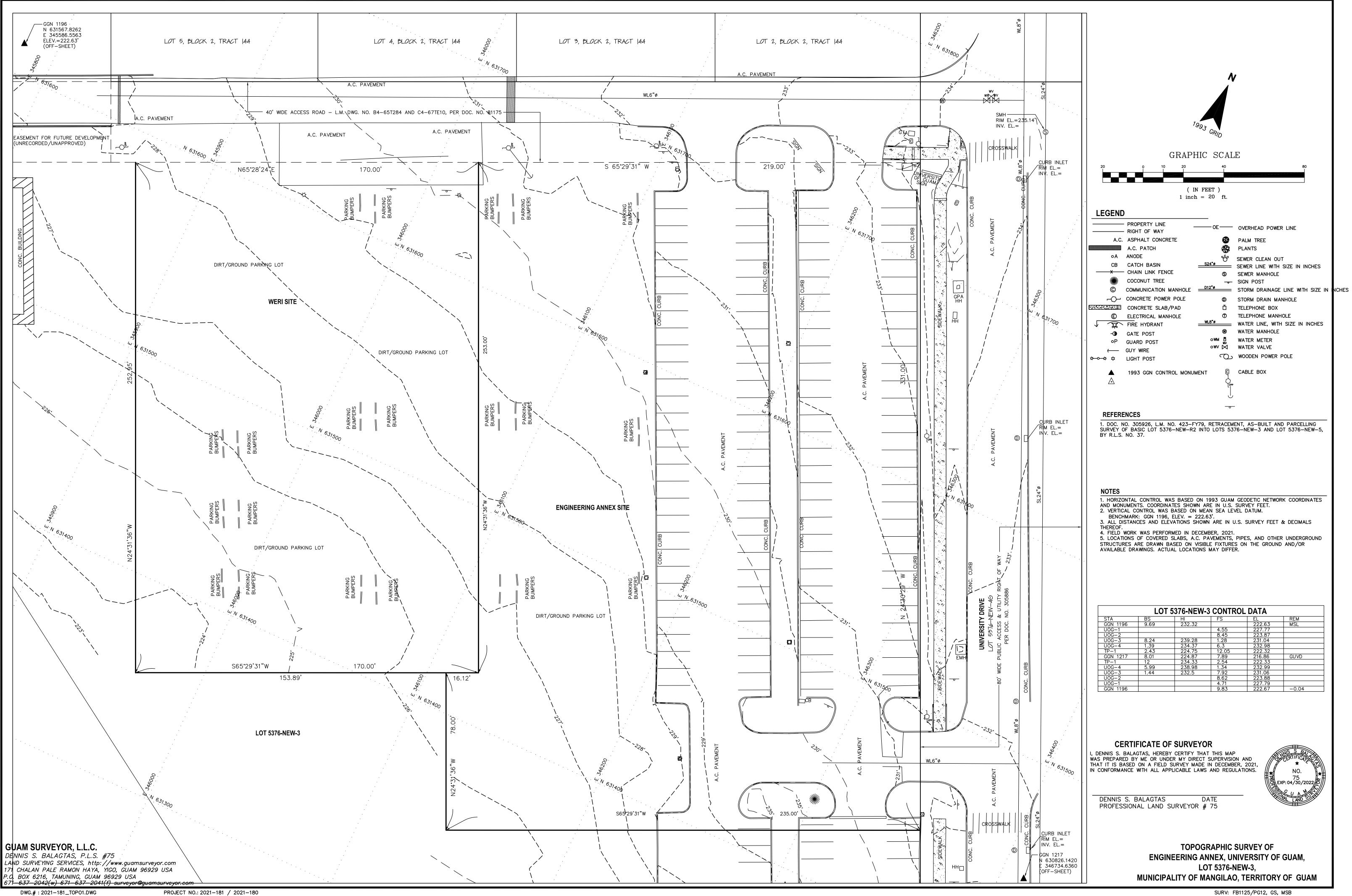
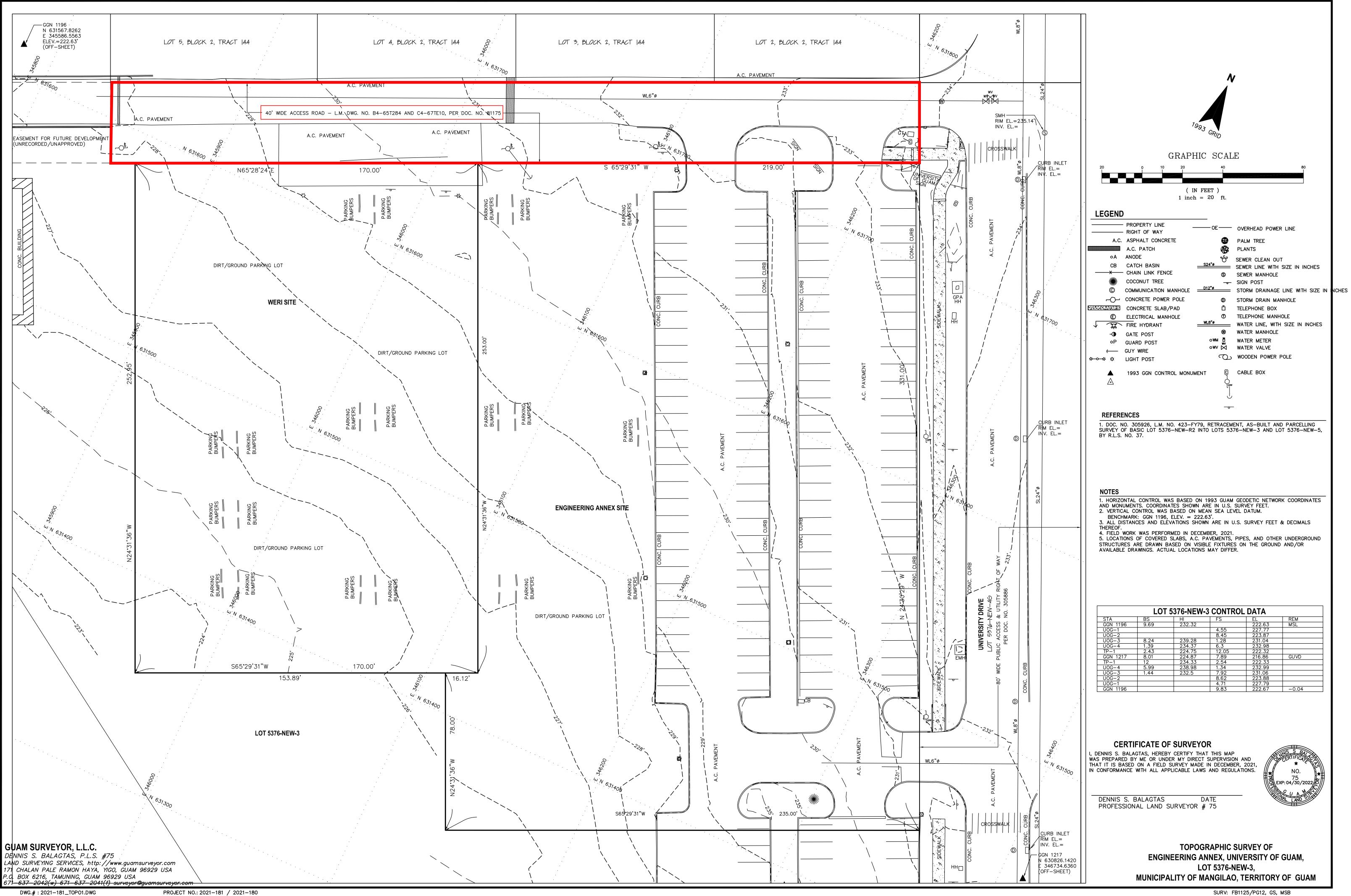




EXHIBIT B

SURV: FB1125/PG12, GS, MSB

EXHIBIT C

SURV: FB1125/PG12, GS, MSB

EXHIBIT D

FINAL REPORT

GEOTECHNICAL ENGINEERING ASSESSMENT PROPOSED ENGINEERING BUILDING UNIVERSITY OF GUAM MANGILAO, GUAM

Prepared for:

SSFM INTERNATIONAL 215 Rojas Street, Suite 213 Harmon, Guam 96913

Prepared By:

OYO CORPORATION, PACIFIC Tumon Bay Business Center, Unit 103 919 Pale San Vitores Road Tumon, Guam 96913

> OYO JOB NO. 210040 March 9, 2022

This page intentionally left blank

OYO Project No. 210040 March 9, 2022

SSFM International 215 Rojas Street, Suite 213 Harmon, Guam 96913

Attention: Mr. Ed Hipolito Senior Project Manager

Re: Geotechnical Engineering Assessment Proposed Engineering Building University of Guam, Mangilao, Guam

Dear Mr. Hipolito:

Thank you for choosing OYO Corp., Pacific as your geotechnical consultant for the Proposed Engineering Building at University of Guam, Mangilao, Guam.

We have completed our Geotechnical Engineering Assessment for the subject project as requested. The findings of the subsurface investigation and our recommendations for the proposed development are presented in the accompanying report.

If you have any questions, please do not hesitate to contact our office. OYO would be pleased to continue providing geotechnical services throughout the implementation of the project, and we look forward to working with you and your organization on this and future projects.

Respectfully submitted,

OYO CORPORATION, PACIFIC

bel

Thomas J. Krasovec, PE (Civil-2125) Office Manager/ Executive Engineer

Kazuki Nakamura, PhD, PEjp President

This page intentionally left blank

TABLE OF CONTENTS

1		ODUCTION
2	SCOP	PE OF SERVICES
	2.1	Geotechnical Exploration2
	2.2	Laboratory Testing
3	SITE	AND SUBSURFACE CONDITIONS4
	3.1	Site Location and Description4
	3.2	Area Geology4
	3.3	Seismicity5
	3.4	Subsurface Conditions7
	3.5	Groundwater Conditions
	3.6	Site Class and Other Seismic Coefficients
	3.7	Soil Liquefaction9
	3.8	Seismic Induced Settlements9
	3.9	Site Information Assessment9
4	GEOT	FECHNICAL ASSESSMENT AND RECOMMENDATIONS11
	4.1	Foundation Discussion11
		4.1.1 General Shallow Foundation Recommendations11
		4.1.2 Uplift and Shear Resistance of Shallow Foundations
		4.1.3 Concrete Slab-on-Grade
	4.2	Lateral Earth Pressures and Retaining Walls14
	4.3	Pavement
	4.4	Infiltration Testing
	4.5	Site Preparation and Earthwork17
		4.5.1 Engineered Fill Material
		4.5.2 Temporary Cut and Fill Slope Reconstruction
		4.5.3 Erosion Control and Construction Dewatering
5	TEST	ING AND INSPECTION21
	5.1	Probe Drilling and Grouting – Building Foundations
	5.2	Ground Penetrating Radar (GPR) Survey21
6	REPO	DRT LIMITATIONS23

FIGURES

TABLE 1: SUMMARY OF GEOTECHNICAL INVESTIGATION LOCATIONS	2
TABLE 2: LIST OF EARTHQUAKES IN GUAM	7
TABLE 3: SEISMIC COEFFICIENTS AND OTHER PARAMETERS	8
TABLE 4: ALLOWABLE BEARING PRESSURES	12
TABLE 5: INFILTRATION TEST RESULTS	16
TABLE 6: ENGINEERED FILL PARAMETERS	18

TABLES

FIGURE 1: GENERAL SITE GEOLOGY	4
FIGURE 2: SEISMIC FAULT ZONES OF GUAM	6

APPENDICES

Boring Location Plan	Appendix A
Borehole Logs	Appendix B
Laboratory Test Results	11

FINAL REPORT LIMITED GEOTECHNICAL ENGINEERING ASSESSMENT PROPOSED ENGINEERING BUILDING UNIVERSITY OF GUAM, MANGILAO, GUAM

1 INTRODUCTION

This report presents OYO's findings and recommendations related to the geotechnical engineering assessment and subsurface investigation completed for the proposed engineering building at University of Guam, Mangilao, and Guam.

Project information was provided by SSFM International. We understand that the project involves the construction of a new five (5) story building with utilities and adjacent parking areas. During the preparation of this report, site and building layout was provided to OYO by SSFM. No details about the structural loads or footing locations were provided for the proposed engineering building. We have assumed that the building will be concrete construction with moderately loaded wall and column foundations.

2 SCOPE OF SERVICES

The scope of services for this study includes project site reconnaissance and the assessment of subsurface conditions thru field exploration and laboratory testing. The subsurface exploration was completed to provide discussions and recommendations concerning earthwork and foundation design and potential geotechnical related issues for the proposed project as follows:

- Geologic review of the project site;
- General subsurface conditions encountered including pertinent soil properties, groundwater levels if encountered and drainage;
- Soil data review and analysis as it relates to the proposed construction and development;
- Civil site recommendations for site preparation and grading including cut and fill, soil material requirements, placement and compaction procedure, and subgrade improvement as appropriate;
- Geotechnical related structural recommendations to support foundations, slab on grade design and construction for the proposed engineering building;
- Settlement estimates for the building foundations.
- Grading and subgrade preparation for the building foundation slabs on grade, utilities and pavements.

2.1 Geotechnical Exploration

OYO subcontracted APDI to provide the drilling services for the subsurface exploration program. A representative of OYO performed the geotechnical field logging, sampling and field assessments. The subsurface exploration consisted of six (6) soil borings. Five (5) soil borings, designated as B-01 to B-05, were drilled within the proposed engineering building site to depths of 60 feet, below the existing grade (BEG); and one (1) soil boring (B-06) was drilled near the existing stormwater retention basin to a depth of 15 feet BEG.

Drilling was completed using a Diedrich and a Mobile Drill P61 drill rig. Soil borings were advanced using a 3.25" hollow stem auger equipped with an automatic hammer. Standard Penetration Tests (SPT) were performed at selected depths within the borings in accordance with ASTM D1586. SPT blow counts were recorded and are summarized on the boring logs. The penetration resistance, in conjunction with soil classifications and laboratory testing were used to assess engineering characteristics of the soils or rock encountered.

Rapid permeability testing was performed in B-06 at depths of 4.5, 10.5 and 15 feet below existing grade. Auger casings were left in the borehole during the test. Water was introduced in the borehole; then, water level BEG was recorded every 5-minutes up to test duration of 30 minutes.

Soil samples recovered during the drilling operations were transported to OYO laboratory in Yigo, Guam for further evaluation/testing. Groundwater when encountered was noted on the boring logs. Descriptions of the soils encountered during our subsurface exploration are provided in the attached Boring Logs. Groundwater conditions, standard penetration resistances, and other pertinent information are also included in the Boring Logs in **Appendix B**. Boring locations were layed out based on information provided by SSFM and as measured from existing light or power poles and the results of utility locating using GPR methods.

The ground surface elevations and geographic coordinates at each boring location as shown below and on the individual boring logs were approximations from GoogleEarth. Investigation locations are summarized in **Table 1**.

Borehole Proposed Approximate Elevation		Borehole Termination	Approximate Coordinates		
	Structure	(ft.)	Depth (ft.)	Latitude	Longitude
B-01	Building	230	60	13.432411°	144.800927°
B-02	Building	229	60	13.432443°	144.800834°
B-03	Building	228	60	13.432264°	144.800792°

 TABLE 1: SUMMARY OF GEOTECHNICAL INVESTIGATION LOCATIONS

Proposed Engineering Building University of Guam, Mangilao, Guam

Borehole	Proposed Structure	Approximate Elevation (ft.)	Borehole Termination Depth (ft.)	Latitude	Longitude
B-04	Building	227	60	13.432118°	144.800839°
B-05	Building	229	60	13.432210°	144.801027°
B-06	Ponding Basin	226	15	13.431952°	144.800821°

Drilling and soil sampling were conducted in accordance with procedures generally recognized and accepted as standard methods of exploration of subsurface conditions related to earthwork and geotechnical engineering projects.

The approximate drilled depth and location of each boring is shown on the attached Boring Location Plan in **Appendix A**. The findings of the borings are presented on the Boring Logs shown in **Appendix B**.

2.2 Laboratory Testing

An OYO geotechnical engineer visually classified the soil samples obtained in the field for this geotechnical report in accordance with ASTM D2488. Select samples were tested for one or all of the following, native water content (ASTM D2216), Atterberg limits (ASTM D4318), grain size analyses (ASTM D6913). Unified Soil Classification System (USCS) of soil samples were determined as per USCS ASTM D2487. The results of laboratory tests and applicable USCS classification are presented in **Appendix C**.

3 SITE AND SUBSURFACE CONDITIONS

3.1 Site Location and Description

The project site is located within the campus of the University of Guam in Mangilao, Guam. The limit of the proposed development is mostly covered with vegetation such as grass, and limestone aggregates, with paved portions used as an existing parking lot. The existing paved parking lot area is adjacent to Route 32 west of Route 10. The site will consist of a five (5) story engineering building, associated utilities, parking areas, and a stormwater retention basin. The project site is bounded by Alstom Circle Road to the Northwest, a paved parking lot to the Southwest, ponding basin to the South, Route 32 on the Northeast and the proposed WERI building site to the Southwest. The existing grades within the area of proposed development vary from approximately EL. 225 to 231 feet above Mean Sea Leve (MSL).

3.2 Area Geology

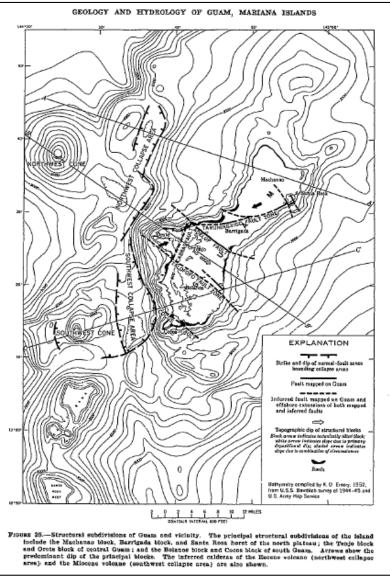
Guam, the largest and southernmost island of the Marianas Islands is subdivided into two major geologic provinces: the northern limestone province and the southern volcanic province, and is separated by a major fault zone at the narrow waistline of the island between Adelup Point and Pago Bay. The northern half of the island is a broad limestone plateau that slopes from an altitude of more than 600 feet at the north end to less than 200 feet near the middle of the island. The southern half is a dissected volcanic upland fringed with limestone along the east coast. The southern volcanic province includes two distinct sub-provinces which are called the central Guam and the south Guam.

FIGURE 1: GENERAL SITE GEOLOGY

Proposed Engineering Building University of Guam, Mangilao, Guam

Based from the revised map entitled "Geologic Map and Section of Guam, Mariana Islands" by H. G. Siegrist, Jr. and Mark K. Reagan in 2008, the project site is located within the south east portion of central Guam and southern section of the northern limestone province which is generally underlain with a thin layer of overburden silty gravelly top soils overlying the detrital facies of Mariana limestone formation or Hagatna Argillaceous Member both of the Pliocene and Pleistocene epoch. The Mariana Limestone formation is described as white, dense, inequigranular, predominantly detrital facies, representing a variety of reef platform and off-reef environments. Coralgal framework, molluscan and Halimeda subfacies locally important. Completely recrystallized, and commonly displays vuggy to cavernous porosity. Dominant rock unit throughout much of northern Guam where it attains thicknesses estimated at between 550 and 600 ft. a major source of guarried aggregate and was identified at the site at approximately 3 to 5 feet below existing grade (BEG). The Hagatna Argillaceous Member is described as coarse to fine-grained pale yellow, tan, or brown fossiliferous detrital limestone containing 2 to 5 percent disseminated clay and as much as 20 percent clay in pockets and cavities; includes undifferentiated lenses of other Limestone facies. Formation typically unconformable upon underlying rocks. Maximum aggregate thickness of formation is as much as 500 feet in some cliffs and appears to be the upper 3 to 5 feet of soils at the site. The detrital limestone is generally friable to well cemented coarse to fine-grained generally porous and cavernous of lagoonal origin.

3.3 Seismicity


Based from the USGS Seismic Hazard Assessment for Guam and the Northern Marianas, the seismicity of the region is primarily controlled by the active northwestward subduction of the Pacific Plate beneath the Philippine Sea Plate at the Marianas Trench.

The island of Guam is formed by three major structural provinces consisting primarily of a) the limestone plateau of north Guam, b) the folded Eocene volcanic rocks of Central Guam, and c) the east dipping Miocene volcanic rocks of South Guam. These major structural provinces consisted of several blocks separated by fault zones.

However, of the seven (7) faults and fault zones identified in Guam, only two were identified as the principal faults and fault zones known to be active namely:

1. The *Adelup fault* extends across the narrow waist of the island and forms the structural boundary between the northern and southern parts of the island. The Adelup fault is likely characterized by low slip rates on the basis of the late Holocene bench that is offset several feet, and the amount of offset suggested by the topographic expression of the fault in the older limestone. Based from the evidence of the surface rupture, it was believed that it is capable of generating earthquakes of at least Mw 6.5. Geologic relations suggest that it is probably a high-angle normal fault dipping to the northeast.

2. The *Tamuning-Yigo fault* zone is characterized by a topographic scarp indicating Quaternary displacement is also considered as a potential source. The fault is at least 25 km long, although Tracey and others (1964) note that the northeastern is not well expressed. Based on the topographic and geologic evidence it was believed to be consistent with the maximum earthquake of at least Mw 6.5. Tracey and others (1964) believed that the Tamuning-Yigo fault zone is a high-angle, down -to-the northwest fault with maximum relief of about 60m. However, it was believed that the Tamuning-Yigo fault zone is less active than the Adelup fault.

FIGURE 2: SEISMIC FAULT ZONES OF GUAM

Reference: General Geology of Guam by Tracey and Others, 1964

Table 3 below shows the list of top 10 significant earthquakes with the highest magnitude within100-km radius of the site dated from 1922 to present.

DATE	Reported Latitude	Reported Longitude	Depth	Magnitude	Magnitude Type
1993-08-08	12.982	144.801	59.3	7.8	Mw
2002-04-26	13.088	144.619	85.7	7.1	Mwc
2001-10-12	12.686	144.98	37	7	Mwc
2014-09-17	13.764	144.429	130	6.7	Mw
1997-04-23	13.986	144.901	100.8	6.5	Mwc
1936-10-29	13.794	145.301	75	6.5	Mw
2005-02-02	14.08	144.715	158.7	6.3	Mwc

TABLE 2: LIST OF EARTHQUAKES IN GUAM

Note: *Mw=moment W-phase; *Mwc=moment centroid; Earthquake data was obtained from USGS website;

Based on the above information, it appears that the island of Guam is categorized to be in the moderate to very high seismicity region. Using GoogleEarth, the project site is situated approximately 3.75 miles southeast of the Tamuning-Yigo fault and 1.60 miles northeast of Adelup Fault.

3.4 Subsurface Conditions

The stratification of the soil conditions at the actual soil test boring locations are described in this section. Boring logs showing the general stratigraphy are provided in **Appendix B**.

<u>Surficial Cover</u>: From the ground surface, boreholes B-03, 04 and 06 encountered approximately 3 to 5 inches of Topsoil. Approximately 3 inches of pavement was encountered at the surface of boreholes B-01, 02 and 05. Please note that the actual thickness and type of surficial material across the site may vary between boring locations.

<u>FILL</u>: The pavement was underlain by fill material classified as sandy silty GRAVEL (GM), was encountered up to a depth of 0.75 feet below NGL. The fill layer is the base or sub-base material for the pavement.

<u>Limestone</u>: Coralline limestone rock categorized as detrital facies of Mariana limestone formation was encountered below the top soil and fill material extending to the maximum depth explored of 60.00 feet. The limestone is moderate with very weak to weak zones at random depths as noted on the boring logs and likely extends to several hundred feet below mean sea level (MSL).

The above subsurface description is of a generalized nature provided to highlight the major soil strata encountered. The boring logs included in the appendices should be reviewed for specific information as to individual test boring locations. The stratification lines shown on the test boring logs represent the conditions only at the actual test boring locations, and represent the approximate boundaries between subsurface materials, the actual transition between subsurface materials may be more gradual.

3.5 Groundwater Conditions

Groundwater was not encountered in any of the test borings during drilling. The borings were backfilled upon completion for safety concerns; therefore, 24-hour water level readings were not recorded. Ground water at the site should be at approximately MSL which is well below the depth explored and should not affect the proposed development. Groundwater elevations can vary seasonally and perched groundwater may be encountered during rainy seasons. The attached boring logs and groundwater observations presented in this report reflect those observed at the time of our field activities. We anticipate that groundwater or perched groundwater as well as surface water can be removed with standard sump and pump systems.

3.6 Site Class and Other Seismic Coefficients

The site geology is generally approximately up to 0.75 feet of silty gravel fill or topsoil underlain by weak to very weak limestone rock which generally extends up to 600 feet below existing grade. Based on the subsurface conditions encountered, the project site may be classified as Class C in accordance with ASCE 7-10 site class definitions/criteria.

Per IBC 2018, the latest mapped MCE spectral response accelerations for the project site indicated the values of 0.2 second spectral response accelerations, $S_s = 2.857g$ and the 1-second spectral response accelerations, $S_I = 0.718g$ were adopted for the building design. The maximum peak ground acceleration (PGA) is estimated at 0.927g. Based on site specific ground motion study conducted by URS Corporation dated April 1, 2016, and per ASCE 7-10 21.4, the acceleration values indicated for Guam may be reduced by 20%.

The associated IBC probabilistic ground motion values for latitude 13.432237 and longitude 144.800666 obtained from third-party graphical user interface seismic design maps as recommended in USGS (https:// hazards.atcouncil.org) are as follows:

Site Class	С	Table 20.3.1- ASCE 7-10
Risk Category	III	Table 1604.5 – IBC 2015
Site Coefficient, Fa	1.0	Table 1613.3.3(1) – IBC 2015

 TABLE 3: SEISMIC COEFFICIENTS AND OTHER PARAMETERS

Ss	2.857	Value from GUIs
$S_{MS} = FaSs$	2.857	Equation 16-37 – IBC 2015
$S_{DS} = 2/3 S_{MS}$	1.905	Equation 16-39 – IBC 2015
Site Coefficient, Fv	1.3	Table 1613.3.3(2) – IBC 2015
S ₁	0.718	Value from GUIs
$S_{M1} = FvS_1$	0.933	Equation 16-38 – IBC 2015
$S_{D1} = 2/3 S_{M1}$	0.622	Equation 16-40 – IBC 2015
PGA*	0.927*	Table E-3 –UFC 3-301-01 Note b*
Site Coefficient, F _{PGA}	1.0	Table 11.8-1 – ASCE 7-10
$PGA_M = F_{PGA}PGA$	0.927	Equation 11.8-1 – ASCE 7-10

Note: Indicated values of S_s and S_1 may be reduced by 20% based on a site-specific ground motion study conducted by AECOM on April 1, 20216 and according to ASCE 7-16 Chapter 21.

3.7 Soil Liquefaction

Soil liquefaction is a phenomenon whereby saturated sandy soils lose it strength due to the increase in soil pore pressure during a seismic event. The most susceptible to liquefaction are saturated, loose, uniformly graded, and fine-grained silty sands or silts. The primary site characteristics to consider for liquefactions are: groundwater depth, soil type, relative density of soil, initial confining or overburden pressure, and intensity and duration of seismic event.

The project site is located on a high ground, with surface elevations ranging from 225 to 231 feet above mean seal level. Ground water level is approximately at the mean sea level. The identified silty gravel and the underlying permeable limestone formation are not considered as potential materials for liquefaction. As such, with the subsurface and groundwater conditions encountered, liquefaction of site soils is not likely to occur.

3.8 Seismic Induced Settlements

Relatively strong to violent ground shaking associated with seismic activity can cause settlement of both saturated and unsaturated sandy soils. The potential impact of seismic induced settlement is ground surface movement and movement of soils below floor slabs or shallow foundations. Strong seismic activities can cause densification of unsaturated sandy soils or loose fills causing settlement.

The site area is generally underlain by relatively shallow limestone rock overlain by dense sandy silty gravel soils. As such we anticipate that settlement related to seismic activity will be limited and not exceed anticipated settlements noted in the conclusions and recommendations section of this report.

3.9 Site Information Assessment

Based on the available client provided information, and results of our field investigations and

laboratory tests, the following are our observations and opinions:

- The building site is generally underlain with shallow weak limestone formation which is suitable to support the planned building on conventional shallow spread or continuous footings with moderate to high bearing capacities. Foundations should not bear on the very week limestone as identified in the approximately top 1 foot of limestone and at various depths BEG as noted in the attached boring logs
- Building footings should be founded on undisturbed weak white limestone as encountered at approximately 3 to 10 feet BEG in the boreholes. Footings bearing on the identified upper 0 to 3 feet of native soil, highly weathered limestone, and fill material will reduce the allowable soil bearing capacity and potentially increase the differential settlement.
- The underlying generally detrital limestone rock formation is generally weak to very weak which the very weak limestone is not be suitable as immediate foundation support for the planned buildings and tank structures. Therefore, if the foundation excavations expose significant weak zones, pockets of weathered limestone, large cracks or discontinuities, the excavation should be extended to reach a more uniform surface and with minimum final surface depressions that may promote surface flooding that will potentially cause future erosion.

Details of our recommendations are discussed in the following sections of this report.

4 GEOTECHNICAL ASSESSMENT AND RECOMMENDATIONS

The following recommendations are based on the information available on the proposed construction, the data obtained from the soil borings, laboratory testing, and our experience with soils and subsurface conditions similar to those encountered at this site. Because the borings represent a very small statistical sampling of the subsurface materials, conditions encountered during construction may be substantially different from those encountered in our borings. In these instances, adjustments to the design and construction may be necessary depending on the actual conditions encountered.

4.1 Foundation Discussion

Based on the information obtained, we recommend that the planned engineering building be supported on shallow foundations, such as spread footings, and/or continuous footings or a reinforced mat bearing directly on the native limestone formation or a layer of compacted engineered fill. The over-excavation should be extended at least 12 inches horizontally beyond all sides of the proposed footings. Prior to backfilling, the exposed surface of the excavation should be scarified to 6 inches BEG, moisture treated to near optimum and recompacted to a minimum of 95 percent of its maximum dry density based on ASTM Test Method D-1557.

As an alternative if higher loading is anticipated (such as columns) may be founded on drilled piers. Drilled piers should be founded in the zone at approximately 18 feet (6 meters) BEG and not bear on the periodic very week or weak zones of limestone. Foundations may then be designed using a combination of end bearing and skin friction along the drilled reinforced pier. Design criteria for drilled pier foundations can be provided upon request.

Our recommendations for subsurface preparation for foundation support are detailed in the following sections.

4.1.1 General Shallow Foundation Recommendations

The near surface fill and native topsoil and highly weathered limestone are not suitable for the support of the proposed structure. Footings for support of the engineering building structure should be placed on native competent limestone as generally encountered at 3 feet BEG or on engineered fill. The foundations areas maybe over-excavated to 3 feet BEG and then backfilled with compacted engineered fill. The building may be supported on compacted engineered fill; non-cohesive structural silty sandy limestone gravel compacted in 8-inch layers to a minimum of 95% of its maximum dry density per ASTM D1557. The over-excavation, backfilling and compaction should extend laterally from the footing edges at a 1H:1V slope. All topsoil, existing fill and very week limestone should be removed below footing areas to extend the footings to competent limestone or the over-excavations may be backfilled with engineered fill.

Based on our experience and existing information of the general area of the project limestone rock formation is characterized with isolated soft and cohesive soil pockets at random areas, which were generally weak zone pockets of the detrital limestone. If the soft soil pockets are identified at the footing bearing elevation, it is recommended to excavate/remove the soft soil pockets and apply 3-inch thick of lean-mix concrete prior to placement of structural backfill. The lean concrete will reduce water seepage that cause the migration of fine grain soils which can develop voids below foundations.

After the necessary preparations are completed the building structure can be supported on spread footings and/or continuous footings based on the following allowable bearing pressures:

Load	Allowable Bearing Capacity
Dead Loads + Live Loads (Engineered Fill)	3000 psf
Total Loads, including wind or seismic loads	4000 psf
Dead Loads + Live Loads (Competent Native Limestone)	4000 psf
Total Loads, including wind or seismic loads	5300 psf

TABLE 4: ALLOWABLE BEARING PRESSURES

<u>Note:</u> In accordance with 2018 IBC Section 1806.1, the presumptive values of vertical foundation pressure and lateral bearing pressure may be increased by 1/3 for seismic and wind loading conditions with the basic load combination as referenced in Section 1605.3.2 of the IBC. The use of higher values for wind and seismic loading may only be used when fully substantiated by the design engineer and approved by the building authority. Any additional loading would be the responsibility of the design engineer.

Footings should bear at a minimum of 3 feet BEG and have a minimum width of 2 feet. The footing foundations should be designed for a total settlement of 1.5 inches with differential settlement of approximately $\frac{1}{2}$ of the total settlement measured across the width of the building. If anticipated settlements are greater than allowed, tie beams or wall footings can be used. Continuous footing should be reinforced top and bottom to span local anomalies by assuming an unsupported length of at least 10 feet.

Due to possible variations in subsurface conditions and related bearing capacity, all footing excavations and trenches should be observed and approved by the Geotechnical Engineer of Record or a qualified representative. Water and possibly some loose soil may collect in the footing excavations as a result of surface precipitation, soil excavations, and near ground surface seepage. Therefore:

- Water, loose soil, and soil softened by water should be removed from the bottom of the footing excavations before placing concrete.
- Footing excavations should not be left open for long periods. If the trenches are left open Proposed Engineering Building

to surface water and precipitation, all loose or soft soils must be removed and replaced with engineered fill or lean concrete. If the concrete cannot be placed due to inclement weather conditions or any other unforeseen circumstances, the bottom of the footing excavations and trenches should be protected by undercutting 3 inches and placing a 3-inch thick lean-mix concrete (2,000 psi) working mat immediately upon approval and before reinforcing steel is placed.

Where unsuitable bearing conditions are encountered as determined by a Geotechnical Engineer or designated representative, these soils should be undercut and replaced with controlled structural fill. If backfilled up to the design bearing elevation, the over-excavation should extend laterally from all foundation edges on a one-to-one slope to the base of the undercut. If the over-excavation is filled with concrete or flowable fill, the widening of the excavation is not required. Any site preparation and earthwork related to foundations should satisfy the requirements of Section 4.5 of this report.

4.1.2 Uplift and Shear Resistance of Shallow Foundations

Shallow foundations may be used to resist both uplift and lateral forces. For the case of uplift forces, the resistance should be calculated including the weight of the foundation and the weight of the overburden soil above the foundation. The overburden soil above the foundation must be well-compacted structural fill. We recommend using total unit weights of 120 and 150 pcf for the subgrade soils and concrete material, respectively. Any continuously applied dead load above the foundation should be calculated also for the case of the resistance to uplift forces.

For transient uplift loads, such as wind loads, the uplift resistance should be computed similarly to the case of the sustained loading, except that the prism of soil above the foundation used to compute the resistance is formed by the projection of lines from the top perimeter of the foundation upwards at an angle of 20 to 30 degrees from the vertical depending on the type of soil.

For soil backfill above the footing, the upward projection of the sides of the soil prism should be at a 30-degree angle, outward from the vertical. The safety factor for uplift resistance for the transient loading condition is the ratio of the sum of the foundation and overburden weights divided by the uplift force and should be at least 1.5.

Passive earth pressures of foundation materials adjacent to the footing, as well as soil friction along the footing base, may be used to resist sliding. The passive soil resistance can be calculated using an estimated equivalent fluid density of 400 pcf. OYO has assumed compacted structural fill as the foundation material to be used for computing passive earth pressures and soil friction. An allowable friction coefficient between the concrete footing and structural fill or native limestone soils can be assumed to be 0.45.

4.1.3 Concrete Slab-on-Grade

OYO understands that the floor slab with in the engineering building will consist of a concrete slab. The proposed floor slabs should be supported by at least 3 feet of newly placed non-expansive structural fill placed in maximum 8-inch layers and compacted to at least 95% of its maximum dry density per ASTM D1557. Moreover, we recommend a design modulus of subgrade reaction of 300 pounds per cubic inch (pci), based on 1ft x 1ft values, be used for slab-on-grade. This recommended value is based on the assumption that the site preparation recommendation in this report has been followed. The value should be adjusted for larger areas using the following expression of cohesive and non-cohesive soils.

$$k_s = \left(\frac{k}{B}\right)$$
 for cohesive soil and
 $k_s = k \left(\frac{B+1}{2B}\right)^2$ for non-cohesive soil

where:

 k_s = coefficient of vertical subgrade reaction for loaded area,

k = coefficient of vertical subgrade reaction for 1x1 square foot area, and

B = width of area loaded, in feet

To provide uniform support beneath the proposed slab-on-grade, we recommend that the floor slabs be underlain by a minimum of 6-inch of free draining (a maximum particle size of ³/₄ inch with less than 5 percent material passing no.200 sieve) well-graded or crushed aggregates which should be covered with a durable plastic membrane or a vapor barrier/retarders (e.g. visqueen). If vapor retarders are utilized, the contractor must follow appropriate slab finishing and curing methods to reduce the risk of slab curling.

If the concrete slab will be subjected to vehicular loads and moisture transmission is not a concern, the concrete slab should be underlain with at least 6 inches of aggregate base course compacted to a minimum of 95 % of its maximum dry density based on ASTM Test method D1557.

4.2 Lateral Earth Pressures and Retaining Walls

Unsupported walls retaining horizontal backfill maybe designed using an active equivalent fluid density of 40 psf/ft. of depth. Fully constrained walls may be designed for an at-rest equivalent fluid density of 60 psf/ft. of depth. Wall design should include any excess loads from sloping backfill or surcharge loads. Expansive soils should not be utilized for backfill against the walls. We recommend that at least 12 inches of the backfill against the wall should consist of permeable fill, such as 3/4-inch crushed aggregates, extending from the bottom to about 12 inches below top the of wall. The upper12 inches of backfill should consist of native fine-grained soils, concrete, asphalt pavement, or other suitable backfill to minimize surface drainage into the wall drain system.

Retaining and/or below grade walls should be drained with either perforated pipe encased in free draining gravel, or a prefabricated drainage system. Perforated or slotted drainage pipes should be at least 3 inches in diameter should be placed with perforations/slots facing down and should discharge away from foundations and other structures. The pipes should be placed no higher than 6 inches above the heel of the wall in the middle of a drainage blanket and drained to appropriate discharge area.

The recommended lateral earth pressures above do not include the effects of the hydrostatic water pressures that may be generated by surface water that may be accumulated behind the retaining walls; or loads imposed by construction equipment, foundations, or roadway traffic. The above earth pressures are unfactored. So, a safety factor of at least 1.50 should be considered in the design.

4.3 Pavement

Concrete or asphalt pavements should match any adjoining pavements. Concrete pavements shall be reinforced in accordance with design engineers' recommendations. In addition, all pavements should be placed over a minimum of 6 inches of road base compacted to a minimum of 95% of the soil maximum dry density in accordance with ASTM – D1557. Pavement thicknesses shall be per the project design drawings. All paved areas should be proof rolled with a heavily loaded truck or steel drum roller to assess for soft soils and deflecting areas. All soft or deflection areas should be removed and replaced with compacted road base.

4.4 Infiltration Testing

Infiltration tests were performed in boring B-06 at depths of 4.5, 10.5, and 15.0 feet BEG. Drilling augers were advanced to target depths prior to infiltration testing. Immediately after reaching the target depth, the borehole was pre-soaked with water for 15-mins. Infiltration test were performed for 30-mins; wherein, water drawdown was recorded every 5-mins. Upon completion of infiltration test at target depths of 4.5 and 10.5 feet BEG, the casings were advance to the next soil sampling depths and infiltration test levels. At completion of infiltration test at 15-feet BEG, the casings were removed and the boring was backfilled using the drilling spoils and leveled with surrounding grades.

The measured infiltration rates are shown in the Table below.

Hole No.	Depth	Soil		ntion Rate h/min)
	(feet)	Description	Average	Last Rate
B-06	4.50	Limestone	0.564	0.408
B-06	10.50	Limestone	0.412	0.32
B-06	15.00	Limestone	1.452	1.224

TABLE 5: INFILTRATION TEST RESULTS

Based on the above infiltration test results, OYO recommend using the average infiltration rates and applying a factor of safety of 2.00. It appears that the underlying limestone is generally permeable and weak, which may have contained some voids or cavities that may propagate into bigger holes overtime such as sink holes, and basically may affect the building foundations. The proposed ponding basin extension must comply with the Guam EPA regulations, to include the restrictions associated with preventing mosquito breeding and development of large size cavities or sink holes over time.

Our experience indicates that there is a relatively high incidence of failure of infiltration facilities to achieve the designed infiltration rate. There are several reasons for this, but they can typically be grouped into two primary categories those related to the in-situ soil conditions and those related to construction practices.

One soil condition of importance is the basic soil classification, often expressed by grain size, or textural analysis as well as plasticity testing. Slight changes in the gradation of soil can result in notable changes in infiltration rate. Permeability which is very similar to infiltration rate varies by over five orders of magnitude from sands to clays. Infiltration rates that are typically considered suitable for infiltration practices vary by just over one order of magnitude, making suitable soils a small subset of all soils. Additionally, the undisturbed soil has a structure or fabric that includes pores and features that are the result of natural processes. This soil fabric develops over time and is influenced by plant growth and other biological processes and this fabric often governs the infiltration rate. Both the soil classification and the fabric can change rapidly with elevation/depth in the soil profile. Hence results of testing that is performed at any elevation other than the invert elevation of the facility can be misleading, even when different by only a few inches.

The effective infiltration rate of a facility is also very sensitive to construction practices. The general principal is that soils which become disturbed do not typically infiltrate as well as

undisturbed soils. Since testing is performed on undisturbed soils, this creates a potential for unexpectedly low field infiltration rates in completed facilities. This makes grading of infiltration basins a challenge. Trafficking of earth moving equipment used to excavate basins can disturb the native soil at the base of the facility. This will cause the fabric described above to be destroyed, resulting in lower permeability. Where fill materials are placed in a basin, or where construction traffic compacts native soils, excess compaction will reduce permeability. Since contractors are typically encouraged to achieve high levels of compaction, this creates the potential for problems. Using the term broadly, this "disturbance" can also include sedimentation that occurs during construction. If at any stage during construction the basin receives runoff that carries sediment, it can clog pores in the native soils rendering them less permeable.

Beyond the disturbance of the native soils and compaction of soils placed in basin bottoms, the composition of any soils placed in basin bottoms is very important. The "engineered" soils placed in the bottom of some facilities consist of a combination of sand, organic matter, and site soils. Getting the proportions of these materials right so that they have the desired infiltration capacity as well as the ability to support plant life and meet any other design requirements can be a challenge. In particular, site soils that are included can be quite variable in composition, and the blending of the soils on site can result in uneven mixing, even when done conscientiously.

Consequently, verification testing of infiltration rates should be required at the time of construction to confirm the design assumptions. This testing should include the native subgrade as well as engineered/amended soils, if present. Otherwise, the system may fail to meet the design intent.

4.5 Site Preparation and Earthwork

In general, all areas of the proposed development should be cleared of all vegetation, trees and roots, rubble, rubbish, and loose or soft soils. Any loose soils and buried structures, such as utility lines, should be properly removed and the resulting excavations backfilled. After demolition activities, it is recommended that the disturbed soils be removed and/or recompacted. Any other buried structures should be removed in accordance with the recommendations of the geotechnical engineer.

In order to provide a uniform support to the planned footings, it is recommended that following stripping, fill removal, and/or demolition activities, at least the upper 12 inches of the disturbed surfaces should be scarified for re-compaction and/or backfilling. The limits of the over-excavation/re-compaction should extend at least 12 and 36 inches horizontally beyond the building and foundation areas.

Prior to backfilling, the exposed subgrade should be proof-rolled to verify the stability. Any soft

or deflecting soils should be re-excavated and replaced with dryer soils and recompacted to the required density.

Utility trench backfill placed in areas adjacent to buildings and exterior slabs, or in pavement areas should be compacted to at least 95 percent of its maximum dry density based on ASTM Test Method D1557. Pipe bedding should be in accordance with the pipe manufacturer's recommendations.

OYO recommends that all earthwork activities and foundation preparation be documented by a qualified engineering technician or engineer under the supervision of a licensed engineer. The documentation should include the assessment of subgrades, foundation bearing soils and testing of compacted fill/backfill materials to verify the work is completed in accordance with the above recommendations.

4.5.1 Engineered Fill Material

Excluding the topsoil, the upper on-site soils, the fill materials generally consist of sandy silty limestone gravelly soils, and the limestone layer can be used as non-expansive Engineered Fill or Structural Fill as long as it satisfies the engineering fill parameters shown in **Table 6**.

Imported soils for use as non-expansive engineered fill or select structural fill should consist generally of soils meeting the following characteristics:

Liquid Limit	25 maximum	
Plasticity Index	6 maximum	
Percent passing No. 200 sieve	15 maximum	
Max. Size of Aggregate	1.5 inches	

 TABLE 6: ENGINEERED FILL PARAMETERS

Approved fill materials should be placed in loose lifts not more than 8 inches thick, moisture conditioned as necessary, and compacted to achieve at least 95 percent of its maximum dry density based on ASTM Test Method D1557, with a dense and unyielding surface. Any yielding soils should be excavated, air-dried to near optimum moisture, and recompacted to be dense and unyielding. However, this method may not be feasible if construction occurs during wet seasonal conditions. Very moist to wet soils will deflect under the operation of heavy equipment, resulting in deep rutting and perhaps rendering the operation of grading and paving equipment difficult or impossible. Therefore, other methods of subgrade modification may be required in areas of any high moisture content. Modification may also be achieved by undercutting and replacement with granular subbase (possibly in combination with a geotextile separation layer or geogrid reinforcement), mixing stone into the subgrade, or treating the subgrade with hydrated

lime. The appropriate method of subgrade modification should be determined at the time of construction.

4.5.2 Temporary Cut and Fill Slope Reconstruction

It is recommended that the limestone rock can be cut almost vertical similar to several existing hillside slopes in the vicinity of Barrigada, Mangilao, Tamuning, and Tumon, which exposed the same type of limestone formations, and have no incident of any slope failure or instability observed. However, the stability of a slope is affected by some external factors such as rainfall intensity, surcharge loadings, earthquakes, and change in engineering and lithologic properties of the limestone rock, which may need to be addressed and properly mitigated. Based on the above, we recommend that the temporary cut slope be performed in increments, such that the initial cut slope should be cut a maximum of 1H:5V (horizontal to vertical) slope ratio. This will allow some time for the exposed cut to be evaluated by a Geotechnical Engineer first if the exposed limestone is generally massive and hard, and well cemented enough to be excavated to a steeper cut. If it is confirmed that the limestone is stable, steeper cuts may be allowed to near vertical as required. The excavation should be performed in a neat manner as much as possible. Any boulders/cobbles that may be exposed should be cut neatly, such that the cut slope should not have any concaving areas that will promote surface erosion of the cut slope. All excavations should be in accordance with OSHA regulations.

It is also recommended that the cut slope should be observed right after any heavy rain or typhoon or earthquake to check for any sign of erosion, seepage, cracks that may have been developed.

4.5.3 Erosion Control and Construction Dewatering

Soil erosion can occur on even the gentlest slopes when the project site is cleared and graded, resulting to the removal of the existing vegetation and the disturbed upper soils were carried down by the run-off water during rainfall or storm event. In addition, concentrated water run-off could be more erosive and will result to gullying, especially along the steeper slopes. Therefore, proper erosion and sediment control measures will have to installed at the site.

At the time of the investigation, no groundwater was encountered in our test borings. As such, groundwater will likely not be of a concern. Water may be an issue if water is introduced into excavations due to surface runoff and local precipitation during construction. Our experience indicates that the foundation and subgrade bearing soils encountered on-site will soften considerably when exposed to free water. Also, water that reacts with decaying vegetations creates a slightly acidic water that moves thru spaces and cracks underground slowly dissolving limestones and creating networks of voids and cavities. In order to avoid such instances, the contractor should divert the water out of the excavations and keep it dry. Methods such as sloping, ditching, and berming should be used to control surface water at the site.

Water should not be allowed to collect in the foundation excavation, or on prepared subgrades of the construction area either during or after construction. Undercut or excavated areas should be sloped to a sump in one corner to facilitate removal of any collected rainwater, groundwater, or surface runoff. Positive site surface drainage should be provided to reduce infiltration of surface water around the perimeter of the construction. The grades should be sloped away from the structure and surface drainage should be collected and discharged such that water is not permitted to infiltrate the backfill areas.

For the purposes of managing water that may enter an excavation, we recommend that collection pits with pumps be used to remove the water from the excavation. The sump pits should be backfilled with open graded stone (AASHTO #57 recommended) and should be surrounded by a properly graded filter medium. The purpose of the filter medium is to prevent clogging of the drainage system by the infiltration of fine-grained soils. Pumping from the sump pits should be done with care to prevent the loss of soil fines, development of soil boils, or instability of slopes. We must emphasize that dewatering requirements will be dictated by groundwater conditions at the time of construction and may require more aggressive techniques than pumping from a sump pit. The contractor should use a technique or combination of techniques which achieve the desired results under actual field conditions.

If applicable, the contractor may provide swales along the upstream areas of the slopes leading to the ponding basins and depression areas should be constructed immediately, so that these can prevent the direct flow of water run-off toward the ponding/sediment basins during heavy rains. The swales should be designed such that water flow is reduced and/or controlled before entering into the ponding basins.

5 TESTING AND INSPECTION

It is recommended that the earthwork activities and foundation preparations should be performed under our field monitoring and inspection program to confirm that the actual subsurface conditions are consistent with the exploratory fieldwork, and also to verify that the intent of our recommendations is incorporated into the project design and construction. Further investigation is suggested using Ground Penetrating Radar (GPR) in order to identify the presence of any silt pockets or sinkholes up to a depth of 50 feet below the proposed building foundation elevation. If unsuitable pockets or sinkholes are identified, probing and grouting ground improvement technique is advised.

5.1 Probe Drilling and Grouting – Building Foundations

Although voids or cavities were not encountered in any of the test borings, there were several sink holes or natural depressions which were identified in other areas within the general vicinity. As such, it is recommended that probing and grouting be performed for the building foundations to detect if any significant cavities might be present below the foundation foot prints. One probe hole must be provided for each 48.5 square foot of footing area, and one probe hole for each smaller footing. Probe hole depth should be at least 10 feet deep below bottom of the isolated spread footings and 10 ft center to center along the centreline of the continuous footings to a depth of 10 feet below bottom of the continuous footing.

Probe drilling records, such as drill rates in minutes/seconds per foot, drilling behaviour, and observation of the cuttings shall be recorded and evaluated by the geotechnical engineer. All probe holes shall be backfilled with a high slump sand-cement mixture or a low strength concrete thoroughly rodded for complete backfilling of the holes. The sand-cement grout shall have a minimum 28-day compressive strength of at least 1450 psi.

Where it is judged that significant voids or weak pockets are encountered in the probe holes, it is recommended that further evaluation must be performed to determine if additional probe holes is required to strengthen the underlying weak subsoil/rock and minimize the settlement of the building foundations.

5.2 Ground Penetrating Radar (GPR) Survey

As an alternative for Probing and Grouting, we recommend performing a ground penetrating radar (GPR) survey. Ground Penetrating Radar (GPR) survey method is a technique that uses high-frequency electromagnetic (EM) waves to acquire subsurface information. GPR detects changes in EM properties (dielectric permittivity, conductivity, and magnetic permeability) that in a geologic setting, are a function of soil and rock material, water content, and bulk density.

Radar is sensitive to changes in material composition, and detecting changes requires movement,

so that looking through stationary items using GPR, the equipment is moved in order for the radar to examine the specific area by looking for the differences in material composition.

The GPR measurements are used in geologic, engineering, hydrologic, and environmental applications. The GPR method is used to map geologic conditions that include depth of bedrock, depth to the water table, depth and thickness of soil strata on land and under fresh water, and the location of subsurface cavities and fractures in bedrock. Other applications include the location of objects such as pipes, drums, tanks, cables and boulders, mapping landfills, and trench boundaries. Although previously, GPR is ineffective for locating plastic conduits or concrete storm and sanitary sewers, the new GPR can ultimately able to determine these non-metallic objects, and the data images can be presented in either 2D or 3D presentations down to as deep as 35 feet.

Where it is judged that significant voids or weak pockets or anomalies are encountered, it is recommended that additional probe holes be drilled for further evaluation and/or to strengthen the underlying weak subsoil/rock and minimize the settlement of the building foundations.

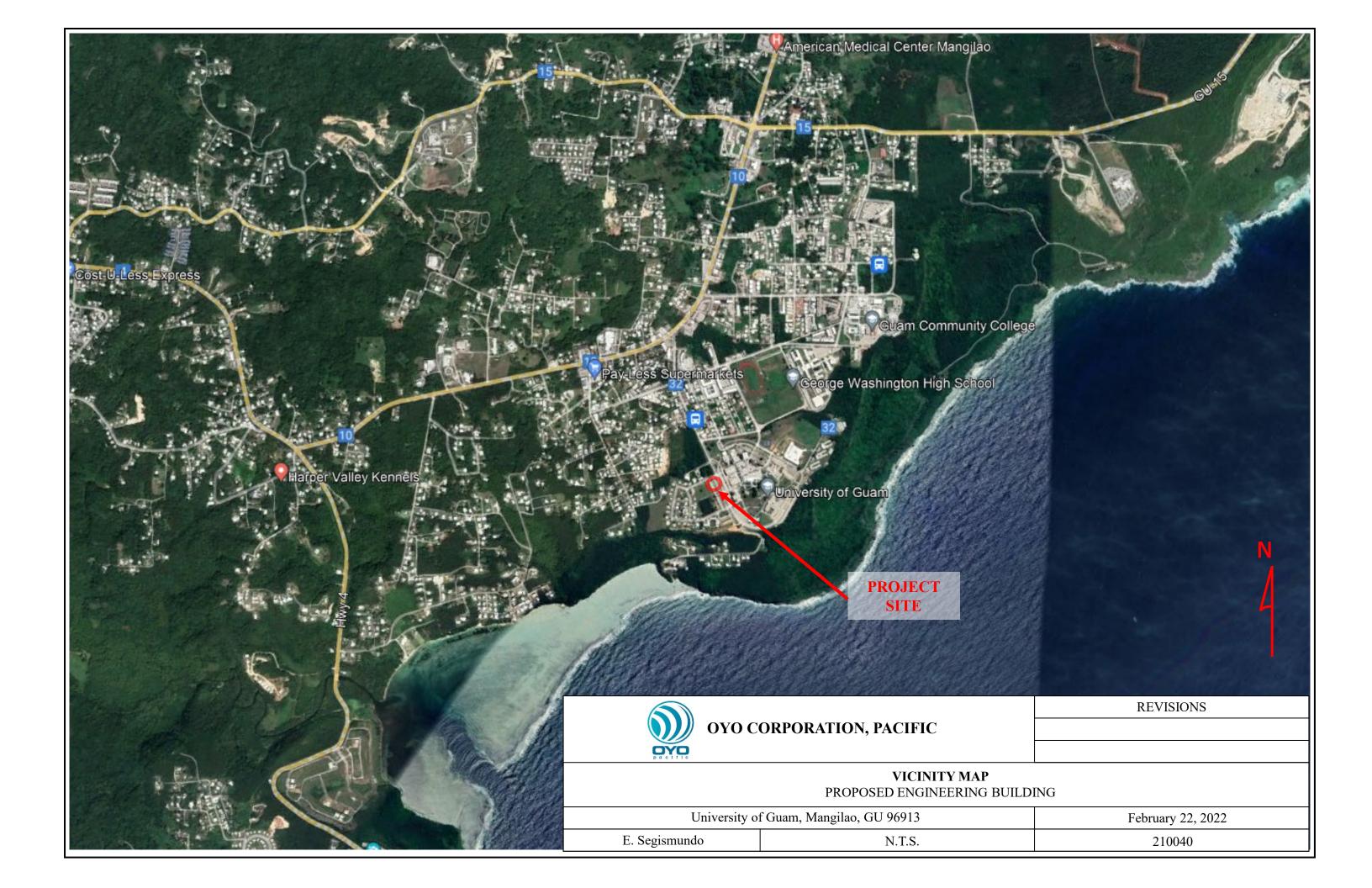
6 REPORT LIMITATIONS

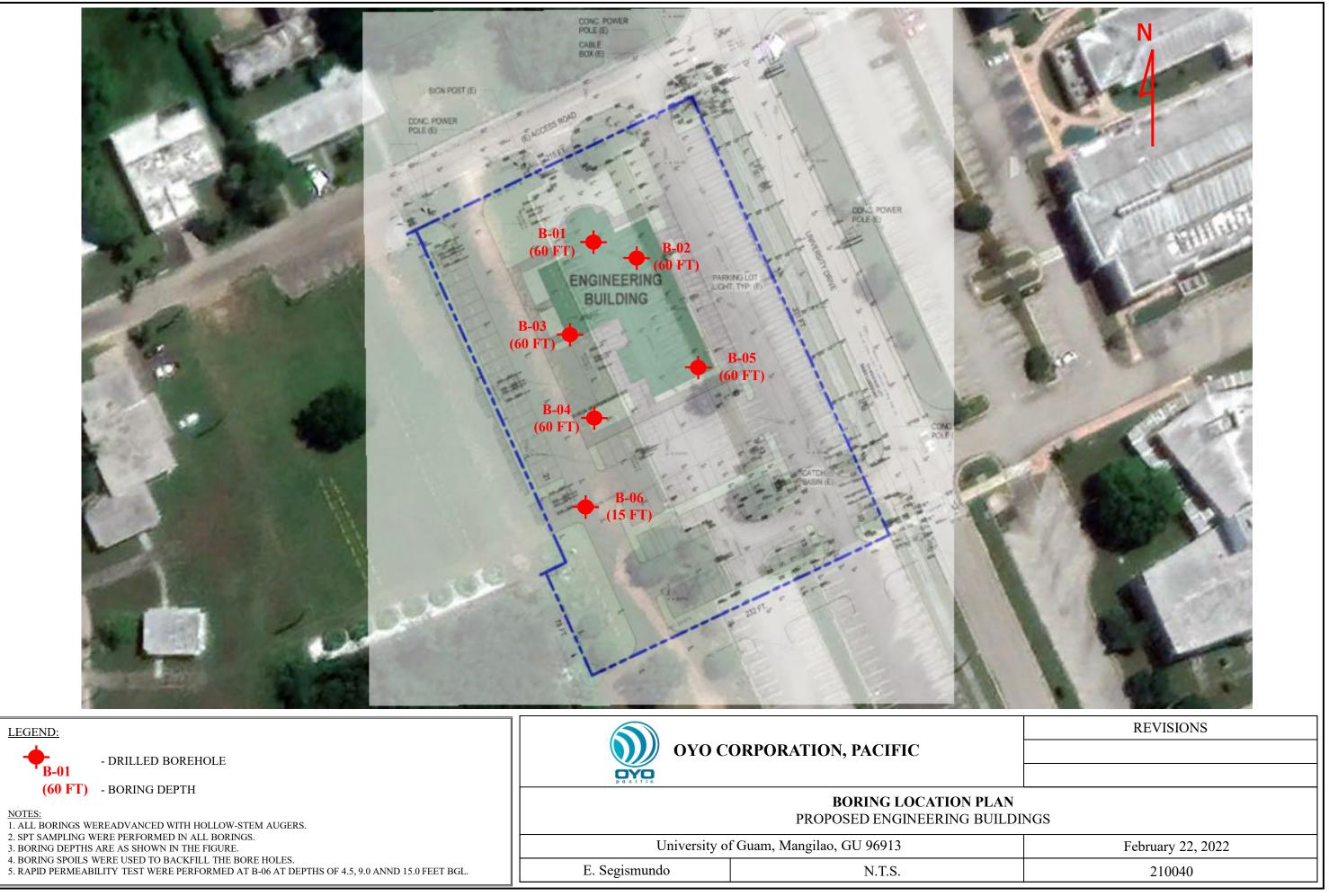
Our findings, observations, opinions, and recommendations presented in this report are based upon the information obtained by OYO Corp., Pacific from the limited soil investigation and measurements, visual observations, and field and laboratory tests performed at the proposed development site, with the assumption that the observed conditions do not vary significantly from those that were encountered in our field investigation. If any variations or undesirable conditions are encountered during construction, we should be notified immediately so that supplemental recommendations may be made. Other variations and conditions may exist which cannot fully be disclosed in this limited investigation. Therefore, the Owner should be aware that there is a practical limit to the usefulness of this report. If conclusions or recommendations on the data contained in this report are made by others, the author is free from the conclusions and recommendations that are made hereafter.

OYO warrants that the findings, recommendations, specifications, or professional advice contained herein have been made in accordance with generally accepted professional geotechnical engineering practices in the local area at the date of this report. No other warranties are implied or expressed.

The conclusions of this report are based on the information provided regarding the proposed developments of the site. If the proposed construction is relocated or redesigned, the conclusions in this report may not be appropriate. Therefore, OYO should be informed of any changes so that the recommendations maybe reviewed and re-evaluated. This report has been prepared for the exclusive use of **SSFM International** and its clients for the specific application of constructing the proposed **Engineering Building** located at University of Guam, Mangilao, Guam.

If you have any questions regarding this report or if we can be of further assistance, please do not hesitate to contact us.


Respectfully,


M

Thomas J. Krasovec, PE (Civil-2125) Office Manager/ Executive Engineer

APPENDIX A

BORING LOCATION PLAN

APPENDIX B

BOREHOLE LOGS

		1				نہ								netrat		٦
SOIL DESCRIPTION	¢, M.	t. t	ē	ŝ	Samples	Blow / Ft.		Lab Test	Ground Water	Ъ.	s	_ R	lesista	ance		
Coordinates : 13.432411, 144.800927	Depth, I	Depth, I	Symbol	uscs	San			_	Gro	Depth,		0	Blows % Wa	per F ter Co	t. xnt.	
Surface Elevation: 230 ft from Google Earth Asphalt (approximately 3")		- .				N	MC	Other		. –	b 10	2	0 30	40	50	60
SANDY SILTY GRAVEL (GM) - white brown with red,	\vdash	4	罬	LS		58 50/6*	9.54 5.83	5A	7	-	0					Ţ
medium dense, moist, fine to coarse grained, with limeston	e 1/	F	罬		Ŧ	82 50/4*	11.16	SA	untore	-	1 1	0				
\gravel fragments (POSSIBLE FILL) LIMESTONE - white brown, very weak, highly to moderatel;	≓/	Ή	躍		×	50/5*		AL	X enco	-	1					
weathered, fine to coarse grained, moist	Ľ/	F	巖		X	50,4* 50,5*	6.25	SA	GWT not encountered	-	9					
weak zone at approximately 4.75 to 10.75 feet BEG very weak zone at approximately 10.75 to 13.25 feet BEG		["	盟		X	41	6.34		ľ	10 -	0					Τ
	-4	F	盟							-					\mathbf{X}	
weak zone at approximately 16.00 to 32.50 feet BEG	—s	F	罬		X	50/5*		AL		-						Ì
		F	薜							-						
	6	20	開		-	50/2*	5.83	5A		20 —	0	_				1
	-7	F	薜							-	1					
		E	躍		×	50/6*	3.82				0					
		F	罬							-						
	9	30	罬		Ŧ	50.6*	4.12			30 -	0					
		F	盟							-						
		F	靈		-					-						
very weak zone at approximately 35.00 to 60.00 feet BEG	-11	F	罬		I	72		AL		-	1					1
	-12	E ₄₀	躍		_					40 -						
	-13	L **	躍		X	71	5.65	SA			9					1
	13	F	罬							-						
	-14	F	盟		X	72	5.10			-	0					1
		F	薜							-					\wedge	
		50	薜		X	36		AL		50 —				◄		-
	16	E	臣											X		
	-17	F	薜		X	44	7.90	SA		-	d			- P	•	
		F	罬							-						
End of boring at 60.00 feet		60		END	-					60 -						-
Groundwater was not encountered	-19	F								-						
Cave-in depth at 51.50 feet	20	F								-	1					
	_	E														
		L 70							L	70 -						_
Date Completed: 01 February 2022																
Driller: APDI - George Omgebei																
Equipment: Diedrich			[F	rop	osed I	Engir	neeri	ng E	Buil	ding			
Drilling Method: Hollow Stem Auger (HSA) Logg ed by: E.Seg ismundo/ A.Arpilleda								Unive	ersity	of	Guan					
			_					Man	gilad), Gl	iam					_
OYO CORPORATION, PAC	FIC	;					В	oreh	ole	No	. В	01				
Tumon	Gua		Project No. 210040 PLATE No. :													

SOIL DESCRIPTION	Depth, M.	Depth, Ft.	Symbol	uscs	Samples	Blow/ Ft.		Lab Test	Ground Water	Depth, Ft.	s	esist	enetra ance s per ater C		
Surface Elevation: 229 ft from Google Earth	•	^	S	2	s	N	MC	Other	<ڻ	_	0 1		ater C D 40		0 60
Asphalt (approximately 3*) SANDY SILTY GRAVEL (GM) - white brown with red. medium dense, moist, fine to coarse grained, with limestic gravel fragments (POSSIBLE FILL) LIMESTONE - white brown, weak highly to moderately weathered, fine to coarse grained, moist	ne 2 3 4 5 6 7			LS		N 50.5° 50.3° 50.3° 50.3° 50.3° 50.3° 50.3° 50.3°	4.12 6.87 8.82	AL AL SA AL	GMT not encountered	0	0 0		0 40		
very weak zone at approximately 7/5 to 30.00 feet BEG very weak zone at approximately 9/5 to 30.00 feet BEG very weak zone at approximately 46.00 to 50.00 feet BEG very weak zone at approximately 55.00 to 60.00 feet BEG in of boring at 60.00 feet End of boring at 60.00 feet Croundwater was not encountered Case-in depth at 41.50 feet Date Completed: 01 February 2022 Drifler: APD - George Orngebel		30 40 			X	64	457	AL 5A		30	0				-
weak zone at approximately 46.00 to 50.00 feet BEG		50			×	50.5*	524			50	0				_
very weak zone at approximately 55.00 to 60.00 feet BEG	-17	-	麗麗		X	44	6.66	54		-	0			é	
End of boring at 60.00 feet Groundwater was not encountered Crave in depth at 41.50 feet	19 20	60 		END	- 					60					
Date Completed: 01 February 2022 Driller: APDI - George Orngebei Equipment: Diedrich Drilling Mehad: Hollow Stem Auger (HSA) Logged by: A Arpilleda		10				F	Prop	osed E Unive Man		of G	Suan	dinç)		
				Pro	ject	No.	B(2100	oreh 40	ole	No.	. В	 PLAT	ENc		

SOIL DESCRIPTION Coordinates : 13.432264, 144.800792	Depth, M.	Depth, Ft.	Symbol	uscs	Samples	Blow / Ft.		Lab Test	Ground Water	Depth, Ft.	s	R	esist Blows	per l	=t.	
Surface Elevation: 228 ft from Google Earth	Ó	-	S.	S	ŝ	- N	MC	- Other	œ۶	٥	0 10			aterC) 40		
ELASTIC SILT (MH) - red brown, medium stiff, moist, fine grained, with sand and limestone gravel fragments, with roots (TOPSOIL - approximately 5) LIMESTONE - white frown, very weak highly to moderately weathered, fine to coarse grained, moist weak zone at approximately 3.50 to 7.50 feet BEG very weak zone at approximately 7.50 to 30.00 feet BEG		0 		LS		55 54 50.3* 50.6* 81 50.4* 68	30.27 5.46 4.93 9.91 8.57	SA SA AL AL SA	GWT not encountered		00000	>				
	—5 —6	_ _ 			X	78		AL		20						-
	—7 —8 —9				X	64	11.49	SA				0				
weak zone at approximately 36.00 to 40.00 feet BEG	—10 —11				x	50.5*	7.51			30	0					/
very weak zone at approximately 45.00 to 60.00 feet BEG					X	53		AL		40						Ť
	—15 —16 —17	50 			x	20	14.08	54		50		0				
End of boring at 60.00 feet Groundwater was not encountered Cave-in depth at 46.00 feet	19 ²⁰	60 		END						60						_
Date Completed: 03 February2022 Driller: APDI - George Oragebei Equipment: Diedrich Drilling Method: Hollow Stem Auger (HSA) Logged by: Esejismundo		L 70 -				F	Prop	osed E Unive Man		of G	uan		ding	1		_
OYO CORPORATION,PAC				Pro	iect	No. 3	BC	oreh	-				чат	ENo		

Superi. og Chillfech Software, USA www.chiltech.com File: C:Slaperby-LOYOC orporation, Pacific 21 1840 - UOG En gineering & WERTB Edgi, Manglao, GU BHL ogs_B1-48-3EN GG (22-18-22) log Date: 3/N222

SOIL DESCRIPTION Coordinates : 13.432118, 144.800839	Depth, M.	Depth, Ft.	Symbol	uscs	Samples	Blow/ Ft.		Lab Test	Ground Water	Depth, Ft.	s	R	esist Blows	enetrat ance s per F ater Co	
Surface Elevation: 227 ft from Google Earth	-	L-		-		N	MC	Other	-		0 1				50 60
ELASTIC SILT (MH) - red brown, stiff, moist, fine grained with sard and linestone gravel fragments, with roots (TOPSOIL - approximately 32) LIMESTONE - white brown, very weak, highly to moderatel weathered, fine loc carse grained, moist weak zone at approximately 2.00 to 10.50 feet BEG very weak zone at approximately 10.50 to 20.00 feet BEG		- 10		LS		20 50.3* 50.6* 50.4* 50.4* 50.5* 50.6* 57	522 4.42 5.16	AL SA AL AL	G//T not encountered	10	0 0 0				
	—5 —6	20			X	74	10.15	54		20 —		o			
weak zone at approximately 25.00 to 40.00 feet BEG	—7 —8				-	50,4*	2.97			-	0				
	—9 —10 —11	30			x	50.6*	4.50			30 — — —	0			1	
	—12 —13	40								40 —				_	
very weak zone at approximately 45.00 to 60.00 feet BEG	—14 —15	50			X	66		AL		50 —					
	—16 —17 —18	-			X	52	9.74	5A		-		þ			4
End of boring at 60.00 feet Groundwater was not encountered Cave-in depth at 41.25 feet		60		END						60					
Date Completed: 03 February 2022 Driller: APDI - George Omgebei Equipment: Diedrich Drilling Method: Hollow Stem Auger (HSA)		- 70 -	[F	Prop	osed E Unive					ding]	
Logged by: E.Segismundo							Br	Man Oreh	gilao ole			-04			
	Gua			Pro	ject	No. :	_		016				PLAT	E No.	:.

Superi. og Chillfech Software, USA www.chiltech.com File: C:Slaperby-LOYOC orporation, Pacific 21 1040 - U OG En gineering & WERTB Elgn, Manglao, GU BHL ogs_B1-18-18-184 OG (02-18-22) log Date: 3/N222

r		-			_	_	-		_					
SOIL DESCRIPTION	Ϋ́.	ť	2	~	les	Blow / Ft.		Lab Test	Þ.	ť	Star	dard Po Resist	enetration ance	n
Coordinates : 13.432210, 144.801027	Depth, I	Depth, I	Symbol	uscs	Samples	Blov		dal	Ground	Depth,		Blows	s per Ft. ater Cont	
Surface Elevation: 229 ft from Google Earth	-	1	"	2		N	мс	Other	0-	-	0 10	20 30		50 60
Asphalt (approximately 3") SILTY SAND (SM) - white brown with red, dense to very	\sim	F		SM LS	X	50/5* 48	9.29 12.15	5.4		-				Z
dense, moist, fine to coarse grained, with limestone gravel	- 1/	F	盟		HHHH	72	6.14		not encounter ed	-	0			\geq
\fragments (POSSIBLE FILL) LIMESTONE - white brown, very weak, highly to moderatel	4	F			1	37 45	871	AL SA	encor	-				
weathered, fine to coarse grained, moist	ľ	F	闘		3	77	9.40		GWT not	-				
	-3	10	開		Ī	59 73	7.61	AL SA	0	10 -	0			
	-4	Ε	開		-	1	1.21							
weak zone at approximately 15.50 to 30.00 feet BEG		L	開		I	50/6*	6.20			_	0			1
Weak 2016 at approximately 10.00 to 30.00 feet DEO		F	開							-				
	6	- 20	薜							20 —				
	7	F	朣							-				
		F	開		_	50/3*	5.35			-	0			
	8	F	開			50/3*	5.35			-				
		E	臣											
		30	臣							30				
		F	盟							-				
very weak zone at approximately 35.00 to 40.00 feet BEG	-11	F	躍		X	67		AL		-				1
		F	臣							-				
	-12	40	薜							40 —				-
	-13	F	盟							-				
		E	躍		I	50/3*	5.53	5A			0			
weak zone at approximately 46.00 to 50.00 feet BEG		F	開							_				
	-15	- 50	躍							50 —				
		F	開							-				
		F	闘		I					-				
very weak zone at approximately 55.00 to 60.00 feet BEG	-17	F	闘		-	59	8.06			-	İΫ́			
	-18	E.	盟							60 -				
End of boring at 60.00 feet Groundwater was not encountered	—19	L		END										
Cave-in depth at 47.00 feet		F								-				
	20	F								-				
		F								-				
		70							-	70 —				-
Date Completed: 02 February 2022														
Driller: APDI - George Omgebei Equipment: Diedrich			ſ											
Drilling Method: Hollow Stem Auger (HSA)							Prop				ng Bu	ilding	1	
Logged by: E.Segismundo								Unive Man	gilac					
							в		-		. в-0	5		
	Gua													
	Gua			P10	ject	110.	2100	40				PLAI	E NO. :	

Superi. og Chillfech Software, USA www.chiltech.com File: C:Slaperby-LOYOC orporation, Pacific 21 1840 - UOG En gineering & WERTB Edgi, Manglao, GU BHL ogs_B1-48-3EN GG (22-18-22) log Date: 3/N222

SOIL DESCRIPTION	ž	æ			s	æ		st	_	đ,	5	Stand	ard P	enetra	tion	٦
Coordinates : 13.431952. 144.800821	Depth, I	Depth, I	Symbol	uscs	Samples	Blow/		ab Test	Ground Water	Depth, I			Resist Blows	s per F	-t	
Surface Elevation: 226 ft from Google Earth	ă	å	s	ñ	Sa	N	мс	Other	₽2	õ	L .	0	% Wa	ater Co	ont.	
SANDY SILTY GRAVEL (GM) - red brown, very dense,			22	GM	X	50/6*	14.35	SA		0 -	0 1	0	0 30) 40	50	٦
moist, fine to coarse grained, with limestone gravel	- /	F	躍		Ŧ	50/5*	542		pa	-	1.0				ľ	
fragments, with roots (TOPSOIL - approximately5") LIMESTONE - white brown, weak, highly to moderately	۲	E	巖		_	50/5*	5.42		not encounter ed		Ĩ				Ι	
weathered, fine to coarse grained, moist	-1	E	盟		x	50/5*			notenc						<u> </u>	
Performed infiltration test at 4.50 feet	-	- 5	薑		X	50/5*		AL	GWT	5 —				-(-
	2	È	麗		X	50/5*	13.03	SA				0			۱,	
		Ľ	薜		×	50/4*	13.10					0				Y
Performed infiltration test at 9.00 feet		F	盟		X					-						
	3	10	巖		•	50/5*		~		10 —						+
	-	Ē	靂								1					
	-4	-	薑		_					-	1					
		F	罬		X	50/5*	12.61	SA		-	1	0				1
End of boring at 15.00 feet		15		END	Ī					15						
Groundwater was not encountered Performed infiltration test at 15.00 feet	5	E														
Cave-in depth at 10.00 feet	_	L								_	1					
		F								-	-					
	-6	20								20 -	-			-	_	-
	_	F								-	1					
		F								-	1					
	-,	F									1					
	-	25								25 -						
		25								25 -						
	8	L								_	4					
	-	F								-	-					
		-								-	1					
		30								30 -						-
	-	F								-	1					
	10	E														
	_	Ľ								_						
	-	L 35 -								35 —						_
Data Consulators 07 Enhances (2022)																
Date Completed: 07 February 2022 Driller: APDI - Roman Mikel																
Equipment: Mobil Drill B61			[5	Pron	osed E	nain	eer	ina	Ruil	dinc	1		1
Drilling Method: Hollow Stem Auger (HSA)								Unive						,		
Logged by E.Segismundo								Man	gilao	, Gι	ıam					_
OYO CORPORATION, PAC	CIFIC						В	oreh	ole	No	. В	-06				
Tumon	Gua	m		Pro	ject	No.	2100	40				1	PLAT	ENo.	.: .	1

APPENDIX C

LABORATORY TEST RESULTS

SUMMARY OF LABORATORY TEST RESULTS

Location/ Sample No.		e Depth t)	Native Moisture Content	Gravel Content	Sand Content	Clay & Silt Content	Liquid Limit	Plastic Limit	Plastic Index
	From	То	(%)	(%)	(%)	(%)	(%)	(%)	(%)
B-01/S-1	0.25	1.75	9.54	40.9	36.3	22.8	-	-	-
B-01/S-2	1.75	2.25	5.83	-	-	-	-	-	-
B-01/S-3	3.25	4.75	11.16	23.6	50.2	26.2	-	-	-
B-01/S-4*	4.75	5.08	-	-	-	-	-	-	-
B-01/S-5	6.25	6.67	-	-	-	-	NP	NP	NP
B-01/S-6	7.75	8.58	6.25	38.2	42.6	19.2	-	-	-
B-01/S-7*	9.25	9.67	-	-	-	-	-	-	-
B-01/S-8	10.75	12.00	6.34	-	-	-	-	-	-
B-01/S-9	15.00	16.42	-	-	-	-	NP	NP	NP
B-01/S-10	20.00	20.67	5.83	43.0	40.3	16.7	-	-	-
B-01/S-11	25.00	25.50	3.82	-	-	-	-	-	-
B-01/S-12	30.00	30.50	4.12	-	-	-	-	-	-
B-01/S-13	35.00	36.50	-	-	-	-	NP	NP	NP
B-01/S-14	40.00	41.50	5.65	34.0	49.7	16.3	-	-	-
B-01/S-15	45.00	46.50	5.10	-	-	-	-	-	-
B-01/S-16	50.00	51.50	-	-	-	-	NP	NP	NP
B-01/S-17	55.00	56.50	7.90	39.5	40.2	20.3	-	-	-
B-02/S-1	0.25	1.67	-	-	-	-	NP	NP	NP
B-02/S-2	1.75	2.00	4.12	-	-	-	-	-	-
B-02/S-3	3.25	4.50	-	-	-	-	NP	NP	NP
B-02/S-4	4.75	5.67	6.87	29.0	51.0	19.9	-	-	-
B-02/S-5*	6.25	6.42	-	-	-	-	-	-	-
B-02/S-6	7.75	9.25	8.82	32.5	45.8	21.7	-	-	-
B-02/S-7	9.25	10.00	-	-	-	-	NP	NP	NP
B-02/S-8*	10.75	11.00	-	-	-	-	-	-	-
B-02/S-9*	15.00	15.25	-	-	-	-	-	-	-
B-02/S-10	25.00	25.13	-	-	-	-	NP	NP	NP
B-02/S-11	35.00	36.50	4.57	37.6	47.8	14.6	-	-	-
B-02/S-12	45.00	46.42	5.24	-	-	-	-	-	-
B-02/S-13	55.00	56.50	6.66	35.2	46.6	18.2	-	-	-

Note: "NP" denotes as "Non-Plasitc" soils; *Sample was not subjected to any laboratory test;

Project:	Proposed UOG Engineering Building										
Location:	Mangilao, Guam										
Client:	SSFM International	Boreholes:	B-01 to B-02								
Proj. No.:	210040	Plate No.	1 of 3								

SUMMARY OF LABORATORY TEST RESULTS

Location/ Sample No.		e Depth ft)	Native Moisture Content	Gravel Content	Sand Content	Clay & Silt Content	Liquid Limit	Plastic Limit	Plastic Index
	From	То	(%)	(%)	(%)	(%)	(%)	(%)	(%)
B-03/S-1	0.00	1.50	30.27	18.5	19.9	61.6	-	-	-
B-03/S-2	1.50	3.00	5.46	53.4	32.3	14.4	-	-	-
B-03/S-3	3.00	4.25	-	-	-	-	NP	NP	NP
B-03/S-4	4.50	5.75	6.56	-	-	-	-	-	-
B-03/S-5	6.00	7.00	4.93	-	-	-	-	-	-
B-03/S-6	7.50	9.00	-	-	-	-	NP	NP	NP
B-03/S-7	9.00	10.33	9.91	29.8	48.6	21.6	-	-	-
B-03/S-8	10.50	12.00	8.57	-	-	-	-	-	-
B-03/S-9	15.00	16.50	-	-	-	-	NP	NP	NP
B-03/S-10	25.00	26.50	11.49	30.0	42.3	27.7	-	-	-
B-03/S-11	35.00	36.42	7.51	-	-	-	-	-	-
B-03/S-12	45.00	46.50	-	-	-	-	NP	NP	NP
B-03/S-13	55.00	56.50	14.08	34.1	45.8	20.1	-	-	-
B-04/S-1	0.00	1.50	-	-	-	-	77	59	18
B-04/S-2*	1.50	2.25	-	-	-	-	-	-	-
B-04/S-3*	3.00	3.50	-	-	-	-	-	-	-
B-04/S-4	4.50	5.33	5.22	36.7	47.0	16.3	-	-	-
B-04/S-5	6.00	6.33	-	-	-	-	NP	NP	NP
B-04/S-6	7.50	7.92	4.42	-	-	-	-	-	-
B-04/S-7	9.00	9.50	5.16	-	-	-	-	-	-
B-04/S-8	10.50	12.00	-	-	-	-	NP	NP	NP
B-04/S-9	15.00	16.50	10.15	28.3	50.3	21.4	-	-	-
B-04/S-10	25.00	25.33	2.97	-	-	-	-	-	-
B-04/S-11	35.00	36.00	4.50	-	-	-	-	-	-
B-04/S-12	45.00	46.50	-	-	-	-	NP	NP	NP
B-04/S-13	55.00	56.50	9.74	28.8	47.2	24.0	-	-	-

Note: "NP" denotes as "Non-Plasitc" soils; *Sample was not subjected to any laboratory test;

Project:	Proposed UOG Enginee	ering Building	
Location:	Mangilao, Guam		
Client:	SSFM International	Boreholes:	B-03 to B-04
Proj. No.:	210040	Plate No.	2 of 3

SUMMARY OF LABORATORY TEST RESULTS

		Native Moisture Content	Gravel Content	Sand Content	Clay & Silt Content	Liquid Limit	Plastic Limit	Plastic Index
From	То	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.25	1.67	9.29	31.0	47.1	21.8	-	-	-
1.75	3.25	12.15	-	-	-	-	-	-
3.25	4.75	6.14	-	-	-	-	-	-
4.75	6.25	-	-	-	-	NP	NP	NP
6.25	7.75	8.71	35.5	44.9	19.5	-	-	-
7.75	9.25	9.40	-	-	-	-	-	-
9.25	10.75	-	-	-	-	NP	NP	NP
10.75	12.25	7.61	41.0	40.7	18.3	-	-	-
15.00	16.00	6.20	-	-	-	-	-	-
25.00	25.25	5.35	-	-	-	-	-	-
35.00	36.50	-	-	-	-	NP	NP	NP
45.00	46.25	5.53	35.2	46.9	17.9	-	-	-
55.00	56.50	8.06	-	-	-	-	-	-
0.00	1.00	14.35	38.7	33.2	28.2	-	-	-
1.50	2.42	5.42	-	-	-	-	-	-
3.00	3.42	-	-	-	-	-	-	-
4.50	4.92	-	-	-	-	NP	NP	NP
6.00	6.92	13.03	29.3	49.5	21.2	-	-	-
7.50	7.83	13.10	-	-	-	-	-	-
9.00	9.42	-	-	-	-	NP	NP	NP
13.50	14.42	12.61	33.8	44.3	21.9	-	-	-
13.50	14.42	12.61	33.8	44.3	21.9		-	
	(1 From 0.25 1.75 3.25 4.75 6.25 7.75 9.25 10.75 15.00 25.00 35.00 45.00 55.00 0.00 1.50 3.00 4.50 6.00 4.50 6.00	0.25 1.67 1.75 3.25 3.25 4.75 3.25 4.75 4.75 6.25 6.25 7.75 9.25 10.75 9.25 10.75 10.75 12.25 15.00 16.00 25.00 25.25 35.00 36.50 45.00 46.25 55.00 56.50 1.50 2.42 3.00 3.42 4.50 4.92 6.00 6.92 7.50 7.83 9.00 9.42	Sample Jeptn (ft) Moisture Content From To (%) 0.25 1.67 9.29 1.75 3.25 12.15 3.25 4.75 6.14 4.75 6.25 - 6.25 7.75 8.71 7.75 9.25 9.40 9.25 10.75 - 10.75 12.25 7.61 15.00 16.00 6.20 25.00 25.25 5.35 35.00 36.50 - 45.00 46.25 5.53 55.00 56.50 8.06 0.00 1.00 14.35 1.50 2.42 5.42 3.00 3.42 - 4.50 4.92 - 6.00 6.92 13.03 7.50 7.83 13.10	Moisture Content Gravel Content From To (%) (%) 0.25 1.67 9.29 31.0 1.75 3.25 12.15 - 3.25 4.75 6.14 - 4.75 6.25 - - 6.25 7.75 8.71 35.5 7.75 9.25 9.40 - 9.25 10.75 - - 10.75 12.25 7.61 41.0 15.00 16.00 6.20 - 25.00 25.25 5.35 - 35.00 36.50 - - 45.00 46.25 5.53 35.2 55.00 56.50 8.06 - 0.00 1.00 14.35 38.7 1.50 2.42 5.42 - 3.00 3.42 - - 4.50 4.92 - - 6.00 6.92 13.03 <td>Moisture Content Graven Content Sand Content From To (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 1.75 3.25 12.15 - - 3.25 4.75 6.14 - - 4.75 6.25 - - - 6.25 7.75 8.71 35.5 44.9 7.75 9.25 9.40 - - 9.25 10.75 - - - 10.75 12.25 7.61 41.0 40.7 15.00 16.00 6.20 - - 25.00 25.25 5.35 - - 35.00 36.50 - - - 45.00 46.25 5.53 35.2 46.9 55.00 56.50 8.06 - - 1.50 2.42 5.42 - - 3.00 3.42</td> <td>Sample Deptine (ft) Moisture Content Gravel Content Sand Content Clay & sint Content From To (%) (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 21.8 1.75 3.25 12.15 - - - 3.25 4.75 6.14 - - - 4.75 6.25 - - - - 6.25 7.75 8.71 35.5 44.9 19.5 7.75 9.25 9.40 - - - 9.25 10.75 - - - - 10.75 12.25 7.61 41.0 40.7 18.3 15.00 16.00 6.20 - - - 25.00 25.25 5.35 - - - 45.00 46.25 5.53 35.2 46.9 17.9 55.00 56.50 8.06 -</td> <td>Same (ft) Moisture Content Graver Content Sand Content Clay & Sitt Liquid Limit From To (%) (%) (%) (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 21.8 - 1.75 3.25 12.15 - - - - 3.25 4.75 6.14 - - - - 4.75 6.25 - - - NP 6.25 7.75 8.71 35.5 44.9 19.5 - 7.75 9.25 9.40 - - - NP 6.25 7.75 8.71 35.5 44.9 19.5 - 9.25 10.75 - - - NP 10.75 12.25 7.61 41.0 40.7 18.3 - 15.00 16.00 6.20 - - - - 55.00 5</td> <td>Same Preprint (h) Moisture Content Graver Content Sand Content Cay & Sitt Content Light Limit Prastic Limit From To (%) (%) (%) (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 21.8 - - 1.75 3.25 12.15 - - - - - 3.25 4.75 6.14 - - - - - 4.75 6.25 - - - NP NP 6.25 7.75 8.71 35.5 44.9 19.5 - - 7.75 9.25 9.40 - - NP NP 10.75 12.25 7.61 41.0 40.7 18.3 - - 15.00 16.00 6.20 - - - - - 10.75 12.25 5.35 35.2 46.9 17.9 - -<</td>	Moisture Content Graven Content Sand Content From To (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 1.75 3.25 12.15 - - 3.25 4.75 6.14 - - 4.75 6.25 - - - 6.25 7.75 8.71 35.5 44.9 7.75 9.25 9.40 - - 9.25 10.75 - - - 10.75 12.25 7.61 41.0 40.7 15.00 16.00 6.20 - - 25.00 25.25 5.35 - - 35.00 36.50 - - - 45.00 46.25 5.53 35.2 46.9 55.00 56.50 8.06 - - 1.50 2.42 5.42 - - 3.00 3.42	Sample Deptine (ft) Moisture Content Gravel Content Sand Content Clay & sint Content From To (%) (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 21.8 1.75 3.25 12.15 - - - 3.25 4.75 6.14 - - - 4.75 6.25 - - - - 6.25 7.75 8.71 35.5 44.9 19.5 7.75 9.25 9.40 - - - 9.25 10.75 - - - - 10.75 12.25 7.61 41.0 40.7 18.3 15.00 16.00 6.20 - - - 25.00 25.25 5.35 - - - 45.00 46.25 5.53 35.2 46.9 17.9 55.00 56.50 8.06 -	Same (ft) Moisture Content Graver Content Sand Content Clay & Sitt Liquid Limit From To (%) (%) (%) (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 21.8 - 1.75 3.25 12.15 - - - - 3.25 4.75 6.14 - - - - 4.75 6.25 - - - NP 6.25 7.75 8.71 35.5 44.9 19.5 - 7.75 9.25 9.40 - - - NP 6.25 7.75 8.71 35.5 44.9 19.5 - 9.25 10.75 - - - NP 10.75 12.25 7.61 41.0 40.7 18.3 - 15.00 16.00 6.20 - - - - 55.00 5	Same Preprint (h) Moisture Content Graver Content Sand Content Cay & Sitt Content Light Limit Prastic Limit From To (%) (%) (%) (%) (%) (%) 0.25 1.67 9.29 31.0 47.1 21.8 - - 1.75 3.25 12.15 - - - - - 3.25 4.75 6.14 - - - - - 4.75 6.25 - - - NP NP 6.25 7.75 8.71 35.5 44.9 19.5 - - 7.75 9.25 9.40 - - NP NP 10.75 12.25 7.61 41.0 40.7 18.3 - - 15.00 16.00 6.20 - - - - - 10.75 12.25 5.35 35.2 46.9 17.9 - -<

Note: "NP" denotes as "Non-Plasitc" soils; *Sample was not subjected to any laboratory test;

Project:	Proposed UOG Engineering Building									
Location:	Mangilao, Guam									
Client:	SSFM International	Boreholes:	B-05 to B-06							
Proj. No.:	210040	Plate No.	3 of 3							

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216 - 19)

Client	SSFM International	Project No.:	210040
Attention:		Date:	8-Feb-22
Project Name	Proposed UOG Engineering Building	Date Recvd.:	2-Feb-22
Location	Mangilao, Guam		

Boring/Test Pit No.	-	B-01/S-1	B-01/S-2	B-01/S-3	B-01/S-6	B-01/S-8	B-01/S-10	B-01/S-11
Sample Depth	ft	0.25 - 1.75	1.75 - 2.25	3.25 - 4.75	7.75 - 8.58	10.75 - 12.00	20.00 - 20.67	25.00 - 25.50
Soil Type								
Tare No.	-	-	-	-	-	-	-	-
Tare Weight	g	186.7	187.2	187.2	187.9	192.9	188.9	186.6
Tare + Wet Soil	g	782.8	399.7	762.9	635.1	726.3	446.8	496.3
Tare + Dry Soil	g	730.9	388	705.1	608.8	694.5	432.6	484.9
Wt. of Wet Soil	g	596.1	212.5	575.7	447.2	533.4	257.9	309.7
Wt. of Dry Soil	g	544.2	200.8	517.9	420.9	501.6	243.7	298.3
Moisture Lost	g	51.9	11.7	57.8	26.3	31.8	14.2	11.4
Moisture Content	%	9.54	5.83	11.16	6.25	6.34	5.83	3.82

Boring/Test Pit No.	-	B-01/S-12	B-01/S-14	B-01/S-15	B-01/S-17		
Sample Depth	ft	30.00 - 30.50	40.00 - 41.50	45.00 - 46.50	55.00 - 56.50		
Soil Type							
Tare No.	-	-	-	-	-		
Tare Weight	g	188	189.3	187.1	190		
Tare + Wet Soil	g	458.7	1013.3	1071.8	989.1		
Tare + Dry Soil	g	448	969.2	1028.9	930.6		
Wt. of Wet Soil	g	270.7	824	884.7	799.1		
Wt. of Dry Soil	g	260	779.9	841.8	740.6		
Moisture Lost	g	10.7	44.1	42.9	58.5		
Moisture Content	%	4.12	5.65	5.10	7.90		

**All laboratory results relate only on the items tested and this report shall not be reproduced except in full and with prior approval of this Laboratory. **

Remarks:

Tested by:

R. Caguin

Checked by: E. Segismundo

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216 - 19)

Client	SSFM International	Project No.:	210040
Attention:		Date:	8-Feb-22
Project Name	Proposed UOG Engineering Building	Date Recvd.:	2-Feb-22
Location	Mangilao, Guam		

Boring/Test Pit No.	-	B-02/S-2	B-02/S-4	B-02/S-6	B-02/S-11	B-02/S-12	B-02/S-13	
Sample Depth	ft	1.75 - 2.00	4.75 - 5.67	7.75 - 9.25	35.00 - 36.50	45.00 - 46.42	55.00 - 56.50	
Soil Type								
Tare No.	-	-	-	-	-	-	-	
Tare Weight	g	550.5	554.9	557.4	555.2	560.2	561.9	
Tare + Wet Soil	g	666.8	1130.3	1297.3	1299.4	1118.6	1363	
Tare + Dry Soil	g	662.2	1093.3	1237.3	1266.9	1090.8	1313	
Wt. of Wet Soil	g	116.3	575.4	739.9	744.2	558.4	801.1	
Wt. of Dry Soil	g	111.7	538.4	679.9	711.7	530.6	751.1	
Moisture Lost	g	4.6	37	60	32.5	27.8	50	
Moisture Content	%	4.12	6.87	8.82	4.57	5.24	6.66	

Boring/Test Pit No.	-				
Sample Depth	ft				
Soil Type					
Tare No.	-				
Tare Weight	g				
Tare + Wet Soil	g				
Tare + Dry Soil	g				
Wt. of Wet Soil	g				
Wt. of Dry Soil	g				
Moisture Lost	g				
Moisture Content	%				

All laboratory results relate only on the items tested and this report shall not be reproduced except in full and with prior approval of this Laboratory.

Remarks:

Tested by: R. Caguin

Checked by: E. Segismundo

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216 - 19)

Client	SSFM International	Project No.:	210040
Attention:		Date:	8-Feb-22
Project Name	Proposed UOG Engineering Building	Date Recvd.:	2-Feb-22
Location	Mangilao, Guam		

Boring/Test Pit No.	-	B-03/S-1	B-03/S-2	B-03/S-4	B-03/S-5	B-03/S-7	B-03/S-8	B-03/S-10
Sample Depth	ft	0.00 - 1.50	1.50 - 3.00	4.50 - 5.75	6.00 - 7.00	9.00 - 10.33	10.50 - 12.00	25.00 - 26.50
Soil Type								
Tare No.	-	-	-	-	-	-	-	-
Tare Weight	g	564.6	555	564	560.4	561.2	559.1	550
Tare + Wet Soil	g	743.2	1159.1	1163.4	934.7	1195.4	1136.6	1255.3
Tare + Dry Soil	g	701.7	1127.8	1126.5	917.1	1138.2	1091	1182.6
Wt. of Wet Soil	g	178.6	604.1	599.4	374.3	634.2	577.5	705.3
Wt. of Dry Soil	g	137.1	572.8	562.5	356.7	577	531.9	632.6
Moisture Lost	g	41.5	31.3	36.9	17.6	57.2	45.6	72.7
Moisture Content	%	30.27	5.46	6.56	4.93	9.91	8.57	11.49

Boring/Test Pit No.	-	B-03/S-11	B-03/S-13			
Sample Depth	ft	35.00 - 36.42	55.00 - 56.50			
Soil Type						
Tare No.	-	-	-			
Tare Weight	g	557.5	558.4			
Tare + Wet Soil	g	1223.3	1144.3			
Tare + Dry Soil	g	1176.8	1072			
Wt. of Wet Soil	g	665.8	585.9			
Wt. of Dry Soil	g	619.3	513.6			
Moisture Lost	g	46.5	72.3			
Moisture Content	%	7.51	14.08			

**All laboratory results relate only on the items tested and this report shall not be reproduced except in full and with prior approval of this Laboratory. **

Remarks:

Tested by:

R. Caguin

Checked by: E. Segismundo

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216 - 19)

Client	SSFM International	Project No.:	210040
Attention:		Date:	9-Feb-22
Project Name	Proposed UOG Engineering Building	Date Recvd.:	2-Feb-22
Location	Mangilao, Guam		

Boring/Test Pit No.	-	B-04/S-4	B-04/S-6	B-04/S-7	B-04/S-9	B-04/S-10	B-04/S-11	B-04/S-13
Sample Depth	ft	4.50 - 5.33	7.50 - 7.92	9.00 - 9.50	15.00 - 16.50	25.00 - 25.3	35.00 - 36.00	55.00 - 56.50
Soil Type								
Tare No.	-	-	-	-	-	-	-	-
Tare Weight	g	550.2	564.5	558.3	562.1	555.7	552.1	555
Tare + Wet Soil	g	943.2	805.3	804.7	1287.9	694.2	1095.3	1305.6
Tare + Dry Soil	g	923.7	795.1	792.6	1221	690.2	1071.9	1239
Wt. of Wet Soil	g	393	240.8	246.4	725.8	138.5	543.2	750.6
Wt. of Dry Soil	g	373.5	230.6	234.3	658.9	134.5	519.8	684
Moisture Lost	g	19.5	10.2	12.1	66.9	4	23.4	66.6
Moisture Content	%	5.22	4.42	5.16	10.15	2.97	4.50	9.74

Boring/Test Pit No.	-				
Sample Depth	ft				
Soil Type					
Tare No.	-				
Tare Weight	g				
Tare + Wet Soil	g				
Tare + Dry Soil	g				
Wt. of Wet Soil	g				
Wt. of Dry Soil	g				
Moisture Lost	g				
Moisture Content	%				

**All laboratory results relate only on the items tested and this report shall not be reproduced except in full and with prior approval of this Laboratory. **

Remarks:

Tested by: R. Caguin

J_____

Checked by: E. Segismundo

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216 - 19)

Client	SSFM International	Project No.:	210040
Attention:		Date:	9-Feb-22
Project Name	Proposed UOG Engineering Building	Date Recvd.:	2-Feb-22
Location	Mangilao, Guam		

Boring/Test Pit No.	-	B-05/S-1	B-05/S-2	B-05/S-3	B-05/S-5	B-05/S-6	B-05/S-8	B-05/S-9
Sample Depth	ft	0.25 - 1.67	1.75 - 3.25	3.25 - 4.75	6.25 - 7.75	7.75 - 9.25	10.75 - 12.25	15.00 - 16.00
Soil Type								
Tare No.	-	-	-	-	-	-	-	-
Tare Weight	g	561.8	561.9	191	554.9	188.6	557.5	186.8
Tare + Wet Soil	g	1153.3	1180.5	812	1208	835.8	1232.2	702.2
Tare + Dry Soil	g	1103	1113.5	776.1	1155.7	780.2	1184.5	672.1
Wt. of Wet Soil	g	591.5	618.6	621	653.1	647.2	674.7	515.4
Wt. of Dry Soil	g	541.2	551.6	585.1	600.8	591.6	627	485.3
Moisture Lost	g	50.3	67	35.9	52.3	55.6	47.7	30.1
Moisture Content	%	9.29	12.15	6.14	8.71	9.40	7.61	6.20

Boring/Test Pit No.	-	B-05/S-10	B-05/S-12	B-05/S-13		
Sample Depth	ft	25.00 - 25.25	45.00 - 46.25	55.00 - 56.50		
Soil Type						
Tare No.	-	-	-	-		
Tare Weight	g	188	561.2	187.2		
Tare + Wet Soil	g	288.5	1176.2	837.4		
Tare + Dry Soil	g	283.4	1144	788.9		
Wt. of Wet Soil	g	100.5	615	650.2		
Wt. of Dry Soil	g	95.4	582.8	601.7		
Moisture Lost	g	5.1	32.2	48.5		
Moisture Content	%	5.35	5.53	8.06		

**All laboratory results relate only on the items tested and this report shall not be reproduced except in full and with prior approval of this Laboratory. **

Remarks:

Tested by:

R. Caguin

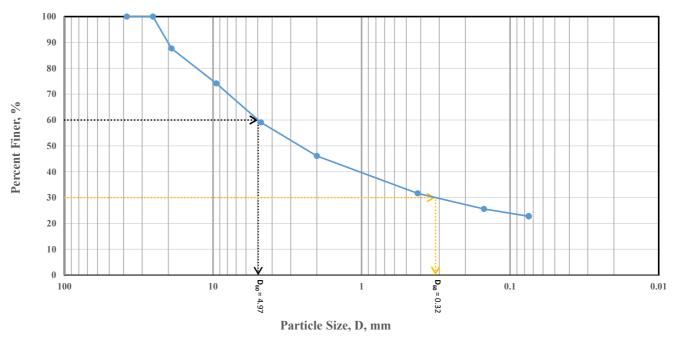
Checked by: E. Segismundo

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216 - 19)

Client	SSFM International	Project No.:	210040
Attention:		Date:	9-Feb-22
Project Name	Proposed UOG Engineering Building	Date Recvd.:	8-Feb-22
Location	Mangilao, Guam - Near Stormwater Pond		

Boring/Test Pit No.	-	B-06/S-1	B-06/S-2	B-06/S-5	B-06/S-6	B-06/S-8	
Sample Depth	ft	0.00 - 1.00	1.50 - 2.42	6.00 - 6.92	7.50 - 7.83	13.50 - 14.42	
Soil Type							
Tare No.	-	-	-	-	-	-	
Tare Weight	g	563.9	192.7	555.2	188.9	550.6	
Tare + Wet Soil	g	784.6	494.2	1174.4	370.2	1066	
Tare + Dry Soil	g	756.9	478.7	1103	349.2	1008.3	
Wt. of Wet Soil	g	220.7	301.5	619.2	181.3	515.4	
Wt. of Dry Soil	g	193	286	547.8	160.3	457.7	
Moisture Lost	g	27.7	15.5	71.4	21	57.7	
Moisture Content	%	14.35	5.42	13.03	13.10	12.61	

Boring/Test Pit No.	-				
Sample Depth	ft				
Soil Type					
Tare No.	-				
Tare Weight	g				
Tare + Wet Soil	g				
Tare + Dry Soil	g				
Wt. of Wet Soil	g				
Wt. of Dry Soil	g				
Moisture Lost	g				
Moisture Content	%				


**All laboratory results relate only on the items tested and this report shall not be reproduced except in full and with prior approval of this Laboratory. **

Remarks:

Tested by: R. Caguin

y. <u>R.</u> Caj

Checked by: E. Segismundo

% +3"	% Gi	ravel	% Sand			% Fi	nes
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	12.35	28.57	12.97	14.48	8.84	22.7	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	87.65
9.52	3/8	74.15
4.76	No. 4	59.08
2.00	No. 10	46.10
0.42	No. 40	31.62
0.150	No. 100	25.62
0.075	No. 200	22.79

5 5 (MATERIAL DESCRIPTION GM) - white brown, very dense, moist, fine to coarse with limestone gravel fragments (FILL)
LL=	ATTERBERG LIMITS PL= PI=
$\begin{array}{rcl} \mathbf{D_{90}} &=& 20.12 \\ \mathbf{D_{50}} &=& 2.59 \\ \mathbf{D_{10}} &=& - \end{array}$	$\begin{array}{c} \underline{\text{COEFFICIENTS}} \\ \mathbf{D}_{85} &= 16.62 \\ \mathbf{D}_{30} &= 0.32 \\ \mathbf{C}_{U} &= \underline{} \\ \end{array} \qquad
USCS =	CLASSIFICATION AASHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-01/S-1 Sample Depth: 0.25 - 1.75 feet

VIII OVOCORDORATION Pacific II '	lding	Proposed UOG Engineering Building	e:	Project Nam		
Diff Corporation, Facine Project No.: 210040 Date Test	ples	Obtained from SPT Samples			O Composition Desifia	
	sted: 9-Feb-22	Date Tested:	210040	Project No.:	O Corporation, Facilic	
Client: SSFM International Plate N	No:	Plate No:	SSFM Internati	Client:		

Tested By : E. Segismundo

100 90 80 70 Percent Finer, % 60 •> 50 40 30 **D**₆₀ = 1.39 20 10 0 **D**₃₀ = 0.12 10 1 0.01 100 Particle Size, D, mm

% +3"	% Gravel % Sand				% Fi	nes	
70 TJ	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	4.58	19.02	11.89	19.19	19.12	26.2	20

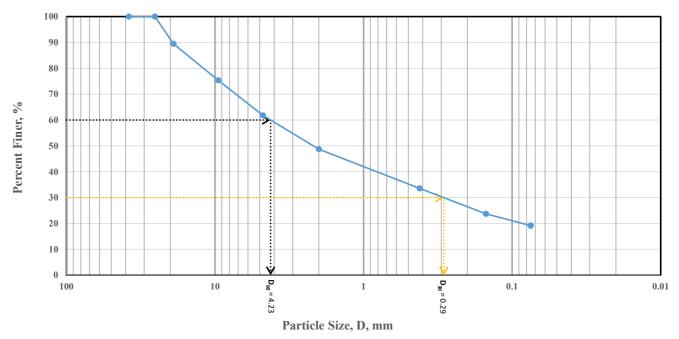
SIEV	E SIZE	PERCENT	
(mm)	(inch)	FINER, %	
38.10	1-1/2	100.00	
25.40	1	100.00	
19.05	3/4	95.42	
9.52	3/8	88.45	
4.76	No. 4	76.40	
2.00	No. 10	64.51	
0.42	No. 40	45.32	
0.150	No. 100	32.01	
0.075	No. 200	26.20	

	MATERIAL DESCRIPTION	
LIMESTONE - white	rown, very weak, highly to moderately weathered to coarse grained, moist	, fine
LL=	ATTERBERG LIMITS PL= PI=	
	COEFFICIENTS	
$\begin{array}{rcl} {\bf D_{90}} & = & 11.10 \\ {\bf D_{50}} & = & 0.61 \\ {\bf D_{10}} & = & - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
	CLASSIFICATION	
USCS =	AASHTO =	

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-01/S-3 Sample Depth: 3.25 - 4.75 feet


	Project Nan	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des		Obtained from SPT Samples	
	Project No.:	: 210040	Date Tested:	9-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

Checked By : T. Krasovec

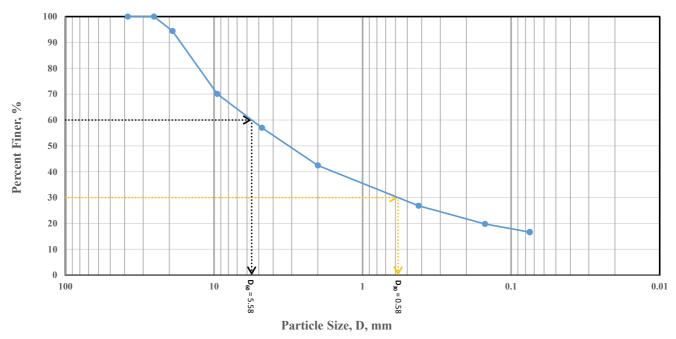
Particle Size Distribution Report

95.42 88.45 76.40

% +3"	% Gr	avel	% Sand			% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	10.53	27.68	13.09	15.11	14.42	19.1	·/

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	89.47
9.52	3/8	75.34
4.76	No. 4	61.80
2.00	No. 10	48.71
0.42	No. 40	33.59
0.150	No. 100	23.73
0.075	No. 200	19.17

	MATERIAL DESCRIPTION	
LIMESTONE - white	brown, weak, highly to moderately w coarse grained, moist	eathered, fine to
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 19.33$	$D_{85} = 15.29$ D_{60}	
$\mathbf{D}_{50} = 2.18$ $\mathbf{D}_{10} = -$	$ \begin{array}{rcl} D_{30} &= & 0.29 & D_{19} \\ C_U &= & - & C_C \end{array} $	
USCS =	CLASSIFICATION AASHTO	_
0505 -	AASIIIO	


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-01/S-6 Sample Depth: 7.75 - 8.58 feet

	Project Nan	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des		Obtained from SPT Samples	
	Project No.:	: 210040	Date Tested:	9-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

% +3"	% Gr	avel	% Sand			% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	5.62	37.38	14.57	15.59	10.18	16.6	66

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	94.38
9.52	3/8	70.09
4.76	No. 4	57.00
2.00	No. 10	42.43
0.42	No. 40	26.84
0.150	No. 100	19.82
0.075	No. 200	16.66

	MATERIAL DESCRIPTION
LIMESTONE - white	rown, weak, highly to moderately weathered, fine to coarse grained, moist
	ATTERBERG LIMITS
LL=	PL= PI=
	<u>COEFFICIENTS</u>
$D_{90} = 16.81$ $D_{50} = 3.14$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$D_{10} = -$	$C_U = - C_C = -$
	<u>CLASSIFICATION</u>
USCS =	AASHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-01/S-10 Sample Depth: 20.00 - 20.67 feet

	Project Nan	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Dese		Obtained from SPT Samples	
	Project No.:	210040	Date Tested:	10-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

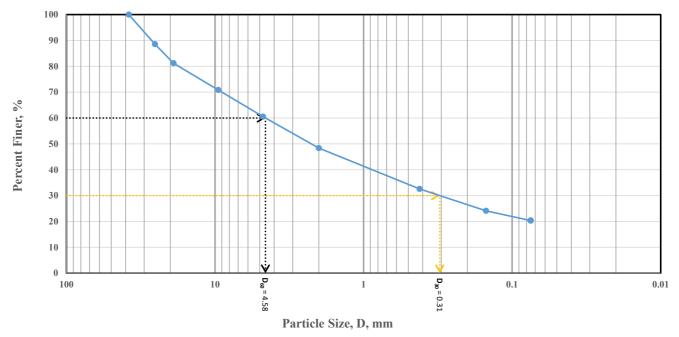
100 90 80 70 Percent Finer, % 60 50 40 30 20 10 0 **D**₃₀ = 0.49 10 0.01 1 0.1 100 Particle Size, D, mm

Particle Size Distribution Report

% +3"	% Gr	avel	% Sand			% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	3.94	30.06	15.55	22.70	11.49	16.2	.7

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	96.06
9.52	3/8	80.27
4.76	No. 4	66.01
2.00	No. 10	50.46
0.42	No. 40	27.76
0.150	No. 100	19.55
0.075	No. 200	16.27

LIMESTONE - white b	MATERIAL DESCRIPTION rown, very weak, highly to moderately weathe to coarse grained, moist	red, fine
LL=	ATTERBERG LIMITS PL= COFFEIGUENTS	
$\begin{array}{l} \mathbf{D_{90}} &= & 14.60 \\ \mathbf{D_{50}} &= & 1.94 \\ \mathbf{D_{10}} &= & - \end{array}$	$\begin{array}{c} \underline{\text{COEFFICIENTS}} \\ \mathbf{D}_{85} &= 11.72 \\ \mathbf{D}_{30} &= 0.49 \\ \mathbf{C}_{U} &= - \\ \end{array} \qquad \begin{array}{c} \mathbf{D}_{60} &= 10.00 \\ \mathbf{D}_{15} &= 10.00 \\ \mathbf{D}_{15} &= 10.00 \\ \mathbf{C}_{C} $	3.41 - -
USCS =	CLASSIFICATION AASHTO =	


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-01/S-14 Sample Depth: 40.00 - 41.50 feet

	Project Name:		Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample De		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	10-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

% +3"	% Gr	avel	el % Sand			% Fines		
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	18.84	20.62	12.15	15.81	12.23	20.3	5	

SIEVI	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	88.55
19.05	3/4	81.16
9.52	3/8	70.83
4.76	No. 4	60.55
2.00	No. 10	48.39
0.42	No. 40	32.58
0.150	No. 100	24.10
0.075	No. 200	20.35

M	IATERIAL DESCRIPTION
LIMESTONE - white bro	wn, very weak, highly to moderately weathered, fine to coarse grained, moist
	ATTERBERG LIMITS
LL=	PL= PI=
	<u>COEFFICIENTS</u>
$D_{90} = 26.74$ $D_{50} = 2.24$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$D_{10} = -$	$C_U = - C_C = -$
	CLASSIFICATION
USCS =	AASHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-01/S-17 Sample Depth: 55.00 - 56.50 feet

	Project Name:		Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des		Obtained from SPT Samples	
	Project No.:	: 210040	Date Tested:	10-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

100 90 80 70 Percent Finer, % 60 × 50 40 30 V 20 10 0 **D**₃₀ = 0.26 10 0.01 **D**₆₀ = 2.43 1 0.1 100

0/ 12!!	% Gi	avel		% Sand		% Fi	nes
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	6.04	22.99	14.17	21.90	15.04	19.8	36

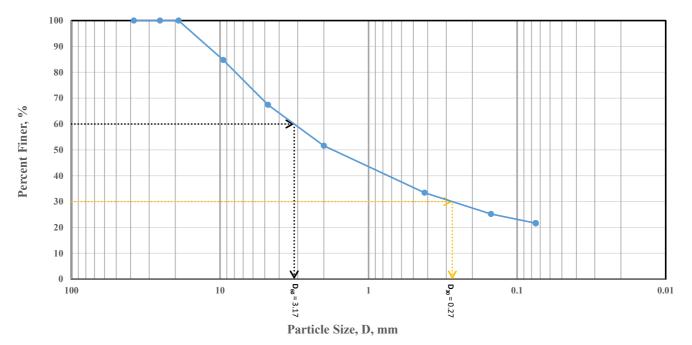
SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	93.96
9.52	3/8	81.93
4.76	No. 4	70.97
2.00	No. 10	56.80
0.42	No. 40	34.90
0.150	No. 100	23.96
0.075	No. 200	19.86

	MATERIAL DESCRIPTIO	<u>N</u>
LIMESTONE - white	brown, very weak, highly to n to coarse grained, moist	noderately weathered, find
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 15.16$ $D_{50} = 1.23$	$\mathbf{D_{85}} = 11.36$ $\mathbf{D_{30}} = 0.26$	$\mathbf{D}_{60} = 2.43$ $\mathbf{D}_{15} = -$
$D_{50} = 1.25$ $D_{10} = -$	$C_{\rm U} = -$	$C_{C} = -$
	CLASSIFICATION	
USCS =	AAS	SHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-02/S-4 Sample Depth: 4.75 - 5.67 feet


	Project Name:		Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des		Obtained from SPT Samples	
	rporation, racinc Project No.: 210040		Date Tested:	10-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

Checked By : T. Krasovec

Particle Size Distribution Report

Particle Size, D, mm

% +3"	% Gi	ravel		% Sand		% Fi	nes
70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.00	32.55	15.87	18.15	11.77	21.6	66

SIEV	E SIZE	PERCENT	
(mm)	(inch)	FINER, %	
38.10	1-1/2	100.00	
25.40	1	100.00	
19.05	3/4	100.00	
9.52	3/8	84.75	
4.76	No. 4	67.45	
2.00	No. 10	51.58	
0.42	No. 40	33.43	
0.150	No. 100	25.22	
0.075	No. 200	21.66	

LIMESTONE - white b	MATERIAL DESCRIPTION rown, very weak, highly to moderately weathered, f to coarse grained, moist	ine
LL=	ATTERBERG LIMITS PL= PI=	
$\begin{array}{l} \mathbf{D_{90}} &= 12.09 \\ \mathbf{D_{50}} &= 1.75 \\ \mathbf{D_{10}} &= - \end{array}$	$\begin{array}{c} \underline{\text{COEFFICIENTS}} \\ \mathbf{D}_{85} &= & 9.63 \\ \mathbf{D}_{30} &= & 0.27 \\ \mathbf{C}_{U} &= & - \\ \end{array} \qquad \begin{array}{c} \mathbf{D}_{60} &= & 3.17 \\ \mathbf{D}_{15} &= & - \\ \mathbf{C}_{C} &= & - \\ \end{array}$	
USCS =	CLASSIFICATION AASHTO =	

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-02/S-6 Sample Depth: 7.75 - 9.25 feet

	Project Na	me:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample De		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	10-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

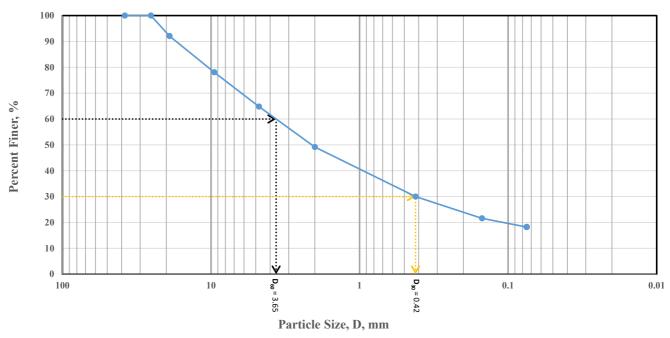
100 90 80 70 Percent Finer, % 60 50 40 30 **D**₆₀ = 4.18 20 10 0 **D**₃₀ = 0.60 10 0.1 0.01 1 100 Particle Size, D, mm

Particle Size Distribution Report

% +3"	% Gr	avel	% Sand			% Fi	nes
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	3.36	34.21	16.27	20.92	10.59	14.6	54

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	96.64
9.52	3/8	79.40
4.76	No. 4	62.43
2.00	No. 10	46.16
0.42	No. 40	25.24
0.150	No. 100	17.90
0.075	No. 200	14.64

	MATERIAL DESCRIPTION	
LIMESTONE - white b	brown, very weak, highly to mo to coarse grained, moist	derately weathered, fine
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 14.58$ $D_{50} = 2.45$	$\mathbf{D_{85}} = 11.93$ $\mathbf{D_{30}} = 0.60$	$D_{60} = 4.18$ $D_{15} = 0.08$
$D_{10} = -$	$C_{\rm U} = -$	$C_{\rm C} = -$
	CLASSIFICATION	
USCS =	AASH	ITO =


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-02/S-11 Sample Depth: 35.00 -36.50 feet

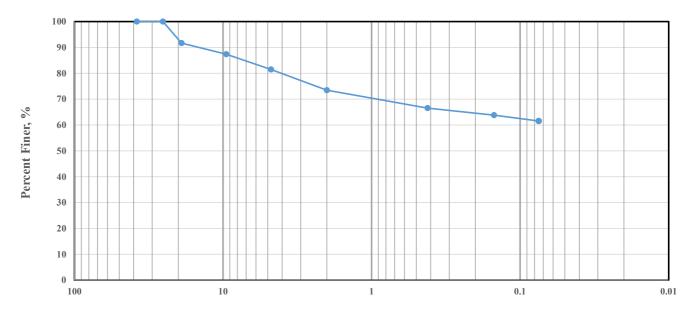
Project Name:		Proposed UOG Engineering Building	
Sample Desc		Obtained from SPT Samples	
Project No.:	210040	Date Tested:	10-Feb-22
Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

% +3"	% Gr	avel		% Sand		% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	7.95	27.24	15.66	19.16	11.76	18.2	24

SIEV	E SIZE	PERCENT	
(mm)	(inch)	FINER, %	
38.10	1-1/2	100.00	
25.40	1	100.00	
19.05	3/4	92.05	
9.52	3/8	78.09	
4.76	No. 4	64.81	
2.00	No. 10	49.15	
0.42	No. 40	30.00	
0.150	No. 100	21.59	
0.075	No. 200	18.24	

LIMESTONE - white	MATERIAL DESCRIPTION brown, very weak, highly to moderately weathered, fine to coarse grained, moist
LL=	ATTERBERG LIMITS PL= PI=
$\begin{array}{l} \mathbf{D_{90}} &= 17.20 \\ \mathbf{D_{50}} &= 2.10 \\ \mathbf{D_{10}} &= - \end{array}$	$\begin{array}{c} \underline{\text{COEFFICIENTS}} \\ \mathbf{D}_{85} &= 13.42 \\ \mathbf{D}_{30} &= 0.42 \\ \mathbf{C}_{U} &= \qquad - \qquad
USCS =	CLASSIFICATION AASHTO


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-02/S-13 Sample Depth: 55.00 - 56.50 feet

Project Name:		Proposed UOG Engineering Building	
Sample Desci		Obtained from SPT Samples	
Project No.:	210040	Date Tested:	10-Feb-22
Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

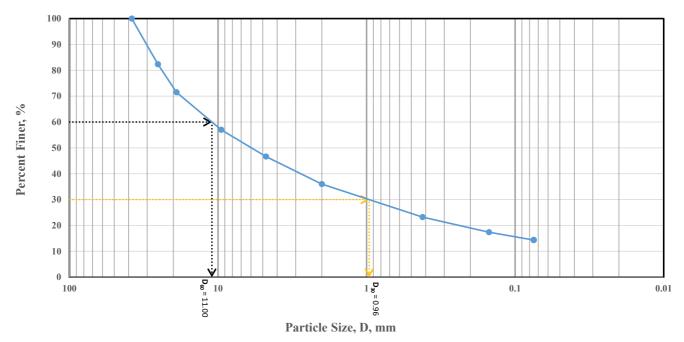
Particle Size, D, mm

% +3"	% Gr	avel	% Sand			% Fi	nes
70 T J	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	8.32	10.21	8.02	6.93	4.96	61.5	56

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	91.68
9.52	3/8	87.38
4.76	No. 4	81.47
2.00	No. 10	73.45
0.42	No. 40	66.52
0.150	No. 100	63.82
0.075	No. 200	61.56

	MATERIAL DESCRIPTION	
()	red brown, medium stiff, moist, fine g ne gravel fragments, with roots (TOPS	<i>,</i>
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 14.52$ $D_{50} = -$	$D_{85} = 7.20$ D_{60} $D_{30} = D_{15}$	
$D_{10} = -$	$C_{\rm U} = - C_{\rm C}$	
	CLASSIFICATION	
USCS =	AASHTO	=

REMARKS:


Topsoil layer from 0.00 to 0.42 feet was used as B-03/S-1 representative sample for Particle Size Distribution analysis.

Sampling Location: Mangilao, Guam

Sample Number : B-03/S-1 Sample Depth: 0.00 - 1.50 feet

OYO Corporation, Pacific Sample Description: Project No.: 210040	Obtained from SPT Samples
UTU Corporation, Facility Device No. 210040	
	Date Tested: 11-Feb-22
Client: SSFM International	Plate No:

Tested By : E. Segismundo

% +3"	% Gr	avel		% Sand	% Fines		
70 T 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	28.53	24.83	10.65	12.76	8.87	14.3	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	82.35
19.05	3/4	71.47
9.52	3/8	56.98
4.76	No. 4	46.65
2.00	No. 10	36.00
0.42	No. 40	23.24
0.150	No. 100	17.37
0.075	No. 200	14.37

LIMESTONE - white brown, v	RIAL DESCRIPTION ery weak, highly to moderately weathered, fine parse grained, moist
ATT	PL= PI=
$\begin{array}{c} \mathbf{D}_{90} &= & 30.28 \\ \mathbf{D}_{50} &= & 5.96 \\ \mathbf{D}_{10} &= & \mathbf{C} \end{array}$	$\mathbf{D}_0 = 0.96$ $\mathbf{D}_{15} = 0.09$
<u>C</u> USCS =	LASSIFICATION AASHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-03/S-2 Sample Depth: 1.50 - 3.00 feet

	Project Name:		Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Description:		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	11-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

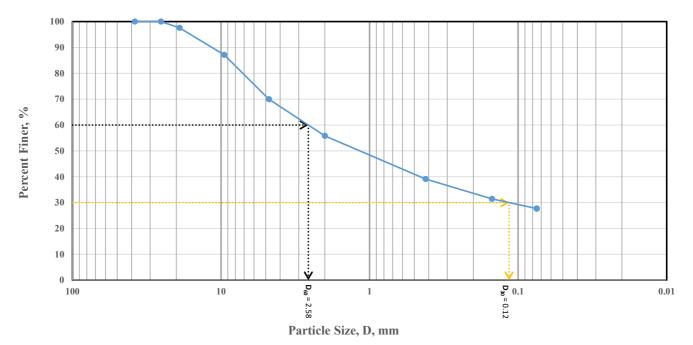
100 90 80 70 Percent Finer, % 60 ₽ 50 40 30 Ý 20 10 0 **D**₆₀ = 2.64 **D**₃₀ = 0.20 10 1 0.01 0.1 100 Particle Size, D, mm

Particle Size Distribution Report

% +3"	% Gr	avel		% Sand	% Fi	nes	
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.72	27.12	14.96	17.47	16.17	21.5	56

SIEV	E SIZE	PERCENT		
(mm)	(inch)	FINER, %		
38.10	1-1/2	100.00		
25.40	1	100.00		
19.05	3/4	97.28		
9.52	3/8	83.76		
4.76	No. 4	70.16		
2.00	No. 10	55.20		
0.42	No. 40	37.73		
0.150	No. 100	26.67		
0.075	No. 200	21.56		

	MATERIAL DESCRIPTION	<u>DN</u>
LIMESTONE - white	brown, weak, highly to moc coarse grained, moist	lerately weathered, fine to
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$\mathbf{D}_{90} = 13.11$ $\mathbf{D}_{50} = 1.26$	$\mathbf{D_{85}} = 10.15$ $\mathbf{D_{30}} = 0.20$	$D_{60} = 2.64$ $D_{15} = -$
$\mathbf{D}_{50} = -$	$C_{\rm U} = -$	$C_{\rm C} = -$
	CLASSIFICATION	
USCS =	AA	SHTO =


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-03/S-7 Sample Depth: 9.00 - 10.33 feet

	Project Name:		Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Description:		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	11-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

% +3"	% Gi	ravel		% Sand		% Fines		
% +3 ¹	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	2.42	27.62	14.15	16.69	11.43	27.7	70	

SIEV	E SIZE	PERCENT		
(mm)	(inch)	FINER, %		
38.10	1-1/2	100.00		
25.40	1	100.00		
19.05	3/4	97.58		
9.52	3/8	87.12		
4.76	No. 4	69.97		
2.00	No. 10	55.82		
0.42	No. 40	39.12		
0.150	No. 100	31.43		
0.075	No. 200	27.70		

	MATERIAL DESCRIPTION	
LIMESTONE - white b	rown, very weak, highly to moderately weather to coarse grained, moist	red, fine
	ATTERBERG LIMITS	
LL=	PL= PI=	
	<u>COEFFICIENTS</u>	
$\mathbf{D}_{90} = 11.53$ $\mathbf{D}_{50} = 1.16$	$\mathbf{D}_{85} = \underline{8.74}$ $\mathbf{D}_{60} = \underline{0.12}$ $\mathbf{D}_{15} = \underline{0.15}$	2.58
D ₁₀ = -	$C_U = $ $C_C = $	-
	CLASSIFICATION	
USCS =	AASHTO =	

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-03/S-10 Sample Depth: 25.00 - 26.50 feet

Project Nam	ie.	Proposed UOG Engineering Building	
Sample Desc		Obtained from SPT Samples	
Project No.:	210040	Date Tested:	11-Feb-22
Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

100 90 80 70 Percent Finer, % 60 ×·····> D₆₀ = 3.43 50 40 30 20 10 0 **D**₃₀ = 0.28 10 1 0.01 0.1 100 Particle Size, D, mm

Particle Size Distribution Report

% +3"	% Gr	avel		% Sand		% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	4.48	29.60	15.63	16.57	13.59	20.1	3

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	95.52
9.52	3/8	81.07
4.76	No. 4	65.93
2.00	No. 10	50.29
0.42	No. 40	33.72
0.150	No. 100	24.20
0.075	No. 200	20.13

LIMESTONE - white brown	TERIAL DESCRIPTION , very weak, highly to moderately weathered, fine o coarse grained, moist
<u>A'</u> LL=	PL= PI=
$D_{50} = 1.95$	COEFFICIENTS $D_{85} = 11.49$ $D_{60} = 3.43$ $D_{30} = 0.28$ $D_{15} = C_U = C_C = -$
USCS =	CLASSIFICATION AASHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-03/S-13 Sample Depth: 55.00 - 56.50 feet

	Project Nam	ie:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Desc		Obtained from SPT Samples	
	Project No.:	210040	Date Tested:	11-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

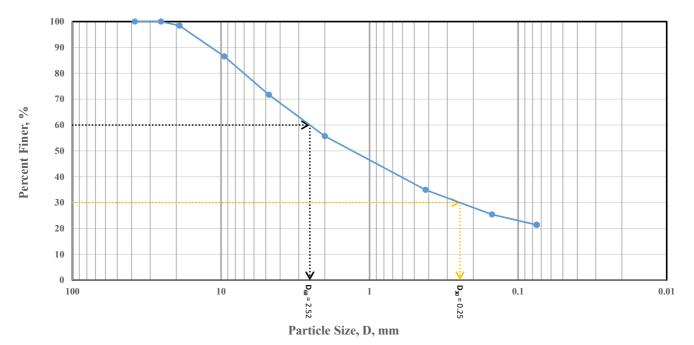
100 90 80 70 Percent Finer, % 60 -) 50 40 30 20 10 •••••> D₆₀ = 3.96 0 **D**₃₀ = 0.51 10 0.01 1 0.1 100 Particle Size, D, mm

Particle Size Distribution Report

% +3"	% Gr	avel		% Sand		% Fi	nes
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	3.86	32.80	15.77	20.03	11.22	16.3	3

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	96.14
9.52	3/8	77.32
4.76	No. 4	63.35
2.00	No. 10	47.58
0.42	No. 40	27.55
0.150	No. 100	19.65
0.075	No. 200	16.33

	MATERIAL DESCRIPTION	<u>ON</u>
LIMESTONE - white	brown, weak, highly to moc coarse grained, moist	lerately weathered, fine to
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 15.19$ $D_{50} = 2.29$	$\mathbf{D_{85}} = 12.63$ $\mathbf{D_{30}} = 0.51$	$D_{60} = 3.96$ $D_{15} = -$
$D_{50} = 2.29$ $D_{10} = -$	$C_{\rm U} = -$	$C_{\rm C} = $
	CLASSIFICATION	
USCS =	AA	SHTO =


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-04/S-4 Sample Depth: 4.50 - 5.33 feet

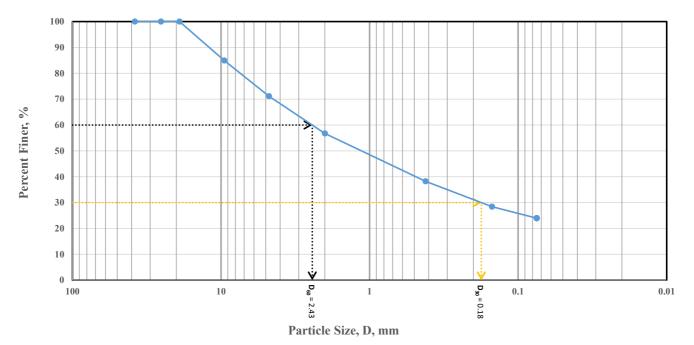
	Project Na	me:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample De		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	11-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

% +3"	% Gr	avel		% Sand		% Fi	nes
% +3 ···	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	1.59	26.73	15.97	20.79	13.52	21.4	0

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	98.41
9.52	3/8	86.52
4.76	No. 4	71.68
2.00	No. 10	55.71
0.42	No. 40	34.92
0.150	No. 100	25.42
0.075	No. 200	21.40

	MATERIAL DESCRIPT	ION
LIMESTONE - white b	rown, very weak, highly to to coarse grained, mois	o moderately weathered, fir
	to course grunded, more	
	ATTERBERG LIMIT	<u>s</u>
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 11.66$	$D_{85} = 8.87$	$D_{60} = 2.52$
$\mathbf{D}_{50} = 1.30$ $\mathbf{D}_{10} = -$	$D_{30} = 0.25$ $C_{\rm U} = -$	$\begin{array}{cccc} D_{15} &= & - \\ C_{C} &= & - \end{array}$
<u> </u>		
	CLASSIFICATION	
USCS =	А	ASHTO =


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-04/S-9 Sample Depth: 15.00 - 16.50 feet

	Project Nan	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des	cription:	Obtained from SPT Samples	
	Project No.:	: 210040	Date Tested:	11-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

Γ	% +3"	% Gravel		% Sand			% Fines	
	% +3 ···	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.00	28.85	14.40	18.52	14.25	23.98	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	100.00
9.52	3/8	84.94
4.76	No. 4	71.15
2.00	No. 10	56.75
0.42	No. 40	38.23
0.150	No. 100	28.42
0.075	No. 200	23.98
	1	1

	IATERIAL DESCRIPTION
LIMESTONE - white br	wn, very weak, highly to moderately weathered, fi to coarse grained, moist
	ATTERBERG LIMITS
LL=	PL= PI=
	<u>COEFFICIENTS</u>
$\mathbf{D}_{90} = 12.02$ $\mathbf{D}_{50} = 1.13$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$D_{10} = -$	$C_U = - C_C = -$
	<u>CLASSIFICATION</u>
USCS =	AASHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-04/S-13 Sample Depth: 55.00 - 56.50 feet

	Project Nar	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Description:		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	14-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

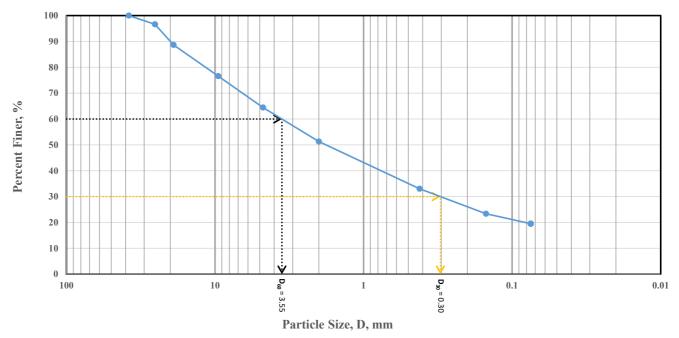
100 90 80 70 Percent Finer, % 60 50 40 30 V 20 10 0 **D**₃₀ = 0.21 **D**₆₀ = 2.77 10 1 0.01 0.1 100 Particle Size, D, mm

Particle Size Distribution Report

9/ 12!!	% Gravel		% Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	2.12	28.90	14.41	19.05	13.67	21.84		

X + J X + J 38.10 1-1/2 25.40 1 19.05 3/4 9.52 3/8 4.76 No. 4 2.00 No. 10 0.42 No. 40 0.150 No. 100	FINER, % 100.00 100.00 97.88 83.78
25.40 1 19.05 3/4 9.52 3/8 4.76 No. 4 2.00 No. 10 0.42 No. 40 0.150 No. 100	100.00 97.88
19.05 3/4 9.52 3/8 4.76 No. 4 2.00 No. 10 0.42 No. 40 0.150 No. 100	97.88
9.52 3/8 4.76 No. 4 2.00 No. 10 0.42 No. 40 0.150 No. 100	
4.76 No. 4 2.00 No. 10 0.42 No. 40 0.150 No. 100	83.78
2.00 No. 10 0.42 No. 40 0.150 No. 100	
0.42 No. 40 0.150 No. 100	68.98
0.150 No. 100	54.56
	35.51
0.075 No. 200	27.37
	21.84

<u>IV</u>	ATERIAL DESCRIPTION
5 5 (M) - white brown, very dense, moist, fine to coarse th limestone gravel fragments (FILL)
	ATTERBERG LIMITS
LL=	PL= PI=
	<u>COEFFICIENTS</u>
$\mathbf{D}_{90} = 12.93$ $\mathbf{D}_{50} = 1.38$	$\mathbf{D_{85}} = 10.11$ $\mathbf{D_{60}} = 2.77$ $\mathbf{D_{30}} = 0.21$ $\mathbf{D_{15}} = -$
$D_{10} = -$	$C_U = $
	<u>CLASSIFICATION</u>
USCS =	AASHTO =


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-05/S-1 Sample Depth: 0.25 - 1.67 feet

	Project Nan	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des		Obtained from SPT Samples	
	Project No.:	210040	Date Tested:	14-Feb-22
	Client:	SSFM International	Plate No:	

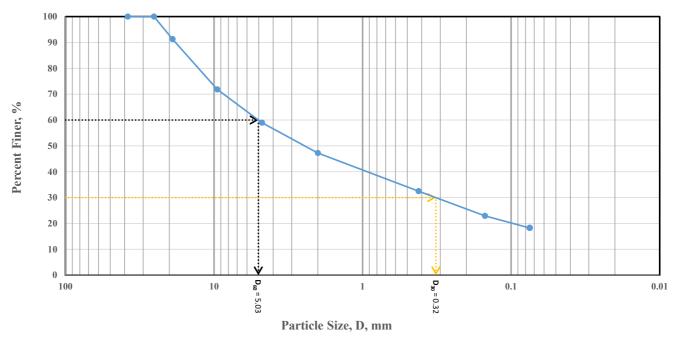
Tested By : E. Segismundo

Particle Size Distribution Report

0/ 12!!	% Gr	avel	% Sand			% Fi	nes
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	11.32	24.20	13.20	18.26	13.48	19.54	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	96.64
19.05	3/4	88.68
9.52	3/8	76.58
4.76	No. 4	64.48
2.00	No. 10	51.28
0.42	No. 40	33.02
0.150	No. 100	23.40
0.075	No. 200	19.54

LIMESTONE - white b	MATERIAL DESCRIPTION own, very weak, highly to moderately weathered, fin to coarse grained, moist
LL=	ATTERBERG LIMITS PL= PI=
$\begin{array}{l} \mathbf{D}_{90} &= 19.98 \\ \mathbf{D}_{50} &= 1.79 \\ \mathbf{D}_{10} &= - \end{array}$	$\begin{array}{c cccc} \hline \textbf{COEFFICIENTS} \\ \textbf{D}_{85} &= 15.43 \\ \textbf{D}_{30} &= 0.30 \\ \textbf{C}_{U} &= - \end{array} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$
USCS =	CLASSIFICATION AASHTO =


REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-05/S-5 Sample Depth: 6.25 - 7.75 feet

		Project Nam	e:	Proposed UOG Engineering Building	
	OVO Corresponding Pasifia			Obtained from SPT Samples	
		Project No.:	210040	Date Tested:	14-Feb-22
Client: SSFM International Plate No:		Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

Particle Size Distribution Report

% +3"	% Gr	avel	% Sand			% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	8.74	32.30	11.74	14.74	14.23	18.26	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	91.26
9.52	3/8	71.83
4.76	No. 4	58.96
2.00	No. 10	47.22
0.42	No. 40	32.49
0.150	No. 100	22.95
0.075	No. 200	18.26

LIMESTONE - white b	MATERIAL DESCRIPTION prown, very weak, highly to	
	to coarse grained, moist	
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 18.21$	$D_{85} = 15.23$	$D_{60} = 5.03$
$D_{50} = 2.46$	$D_{30} = 0.32$	D ₁₅ = -
D ₁₀ = -	C _U = -	$C_{C} = -$
	CLASSIFICATION	
USCS =	AA	SHTO =

REMARKS:

Sampling Location: Mangilao, Guam

Sample Number : B-05/S-8 Sample Depth: 10.75 - 12.25 feet

	Project Na	me:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample De		Obtained from SPT Samples	
	Project No.	: 210040	Date Tested:	14-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

100 90 80 70 Percent Finer, % 60 --> 50 40 30 **D**₆₀ = 3.70 ······ 20 10 0 **D**₃₀ = 0.44 10 1 0.01 0.1 100 Particle Size, D, mm

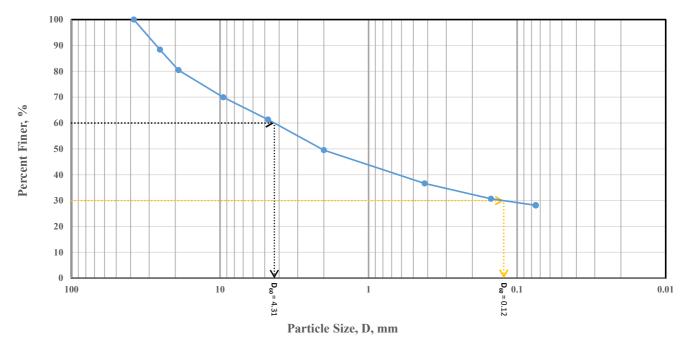
% +3"	% Gravel		% Sand % Fines				nes
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.49	32.76	16.30	18.94	11.62	17.9	00

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	97.51
9.52	3/8	77.93
4.76	No. 4	64.76
2.00	No. 10	48.46
0.42	No. 40	29.51
0.150	No. 100	21.43
0.075	No. 200	17.90

	MATERIAL DESCRIPTI	<u>ON</u>
LIMESTONE - white	brown, weak, highly to mo coarse grained, moist	derately weathered, fine to
	ATTERBERG LIMITS	<u>}</u>
LL=	PL=	PI=
	COEFFICIENTS	
$D_{90} = 14.60$ $D_{50} = 2.17$	$\mathbf{D_{85}} = 12.23$ $\mathbf{D_{30}} = 0.44$	$D_{60} = 3.70$ $D_{15} = -$
$D_{10} = -$	$C_{\rm U} = $	$C_{\rm C} = -$
	CLASSIFICATION	
USCS =	AA	ASHTO =

REMARKS:

Sampling Location: Mangilao, Guam


Sample Number : B-05/S-12 Sample Depth: 45.00 - 46.25 feet

	e:	Proposed UOG Engineering Building	
Sample Desc		Obtained from SPT Samples	
Project No.:	210040	Date Tested:	14-Feb-22
Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

Checked By : T. Krasovec

Particle Size Distribution Report

Particle Size Distribution Report

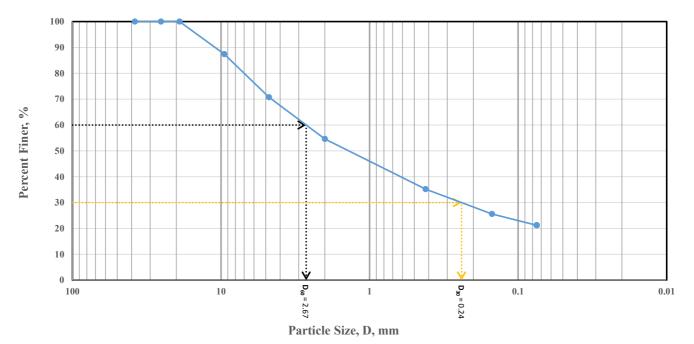
% +3"	% Gr	avel	% Sand			% Fi	nes
∽₀ + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	19.53	19.12	11.81	12.90	8.45	28.19	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	88.34
19.05	3/4	80.47
9.52	3/8	69.95
4.76	No. 4	61.35
2.00	No. 10	49.53
0.42	No. 40	36.63
0.150	No. 100	30.73
0.075	No. 200	28.19

	MATERIAL DESCRIPTION	
	1) - red brown, very dense, moist, fine mestone gravel fragments (TOPSOIL)	-
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$\mathbf{D}_{90} = 26.91$ $\mathbf{D}_{50} = 2.07$	$\mathbf{D_{85}} = \underline{22.48}$ $\mathbf{D_{60}}$ $\mathbf{D_{30}} = 0.12$ $\mathbf{D_{15}}$	
$\mathbf{D}_{50} = 2.07$ $\mathbf{D}_{10} = -$	$C_{\rm U} = - C_{\rm C}$	
	CLASSIFICATION	
USCS =	AASHTO	=

REMARKS:

Topsoil layer from 0.00 to 0.42 feet was used as B-06/S-1 representative sample for Particle Size Distribution analysis.


Sampling Location: Mangilao, Guam - Near Stormwater Pond

Sample Number : B-06/S-1 Sample Depth: 0.00 - 1.00 feet

	Project Name:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Description:	Obtained from SPT Samples	
	Project No.: 210040	Date Tested:	14-Feb-22
	Client: SSFM Internation	nal Plate No:	

Tested By : E. Segismundo

Particle Size Distribution Report

% +3"	% Gr	avel		% Sand		% Fi	nes
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.00	29.26	16.14	19.39	13.98	21.23	

SIEV	E SIZE	PERCENT
(mm)	(inch)	FINER, %
38.10	1-1/2	100.00
25.40	1	100.00
19.05	3/4	100.00
9.52	3/8	87.44
4.76	No. 4	70.74
2.00	No. 10	54.60
0.42	No. 40	35.21
0.150	No. 100	25.59
0.075	No. 200	21.23

	MATERIAL DESCRIPTIO	DN
LIMESTONE - white	brown, weak, highly to mode coarse grained, wet	erately weathered, fine to
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$\mathbf{D}_{90} = 10.97$ $\mathbf{D}_{50} = 1.38$	$\mathbf{D_{85}} = 8.60$ $\mathbf{D_{30}} = 0.24$	$D_{60} = 2.67$ $D_{15} = -$
D ₁₀ =	C _U =	C _C = -
	CLASSIFICATION	
USCS =	AAS	SHTO =

REMARKS:

Sampling Location: Mangilao, Guam - Near Stormwater Pond

Sample Number : B-06/S-5 Sample Depth: 6.00 - 6.92 feet

	Project Nan	ne:	Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Des		Obtained from SPT Samples	
	Project No.:	: 210040	Date Tested:	14-Feb-22
	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

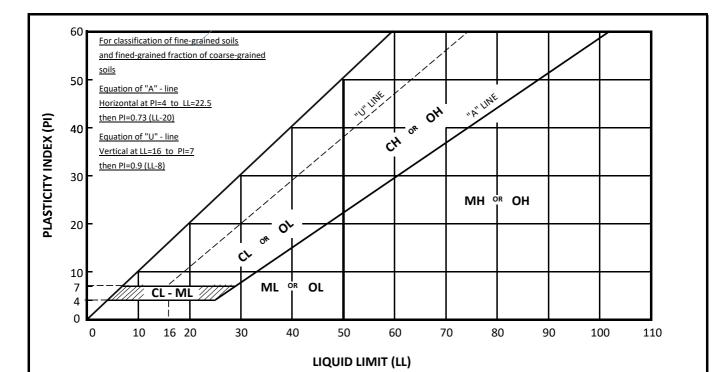
100 90 80 70 Percent Finer, % 60 ৵ **D**₆₀ = 3.25 50 40 30 20 10 0 **D**₃₀ = 0.22 10 1 0.01 0.1 100 Particle Size, D, mm

Particle Size Distribution Report

% +3"	% Gravel		% Gravel % Sand				nes
70 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.00	33.84	13.94	16.32	14.03	21.87	

SIEV	E SIZE	PERCENT	
(mm)	(inch)	FINER, %	
38.10	1-1/2	100.00	
25.40	1	100.00	
19.05	3/4	100.00	
9.52	3/8	82.26	
4.76	No. 4	66.16	
2.00	No. 10	52.22	
0.42	No. 40	35.90	
0.150	No. 100	26.70	
0.075	No. 200	21.87	

	MATERIAL DESCRIPTION	
LIMESTONE - white	brown, weak, highly to modera coarse grained, wet	ately weathered, fine to
	ATTERBERG LIMITS	
LL=	PL=	PI=
	COEFFICIENTS	
$\mathbf{D}_{90} = 12.89$ $\mathbf{D}_{50} = 1.62$	$\mathbf{D_{85}} = 10.60$ $\mathbf{D_{30}} = 0.22$	$D_{60} = 3.25$ $D_{15} = -$
$D_{10} = -$	$C_U = -$	$C_{C} = -$
	CLASSIFICATION	
USCS =	AASH	TO =


REMARKS:

Sampling Location: Mangilao, Guam - Near Stormwater Pond

Sample Number : B-06/S-8 Sample Depth: 13.50 - 14.42 feet

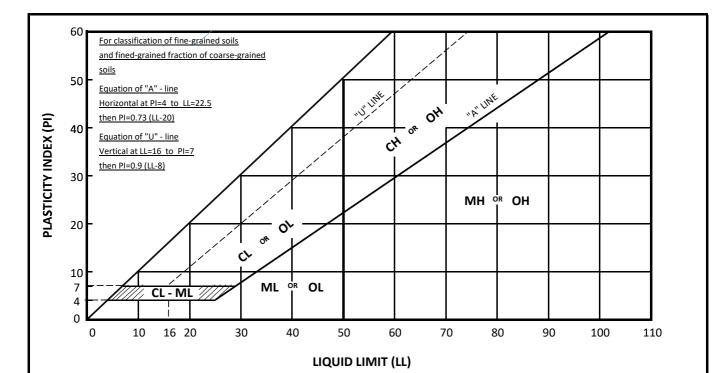
	Project Name:		Proposed UOG Engineering Building	
OYO Corporation, Pacific	Sample Description:		Obtained from SPT Samples	
	Project No.:		Date Tested:	14-Feb-22
pacific	Client:	SSFM International	Plate No:	

Tested By : E. Segismundo

SYMBOL	LOCATION	DEPTH FEET	LL	PL	PI	CLASSSIFICATION
	B-01/S-5	6.25-6.67	NP	NP	NP	SILT (ML)
	B-01/S-9	15.00-16.42	NP	NP	NP	SILT (ML)
	B-01/S-13	35.00-36.50	NP	NP	NP	SILT (ML)
X	B-01/S-16	50.00-51.50	NP	NP	NP	SILT (ML)
•	B-02/S-1	0.25-1.67	NP	NP	NP	SILT (ML)

Soil Consistency Guide

с	OHESSIONLESS SOI	LS	COHESSIVE SOILS		
Density	N, (blows/ft.)	Approximate Relative Density, (%)	Consistency	N, (blows/ft.)	Approximate Undrained Shear Strength, (psf)
Very Loose	0 to 4	0-15	Very Soft	0 to 2	< 250
Loose	4 to 10	15-35	Soft	2 to 4	250-500
Medium Dense	10 to 30	35-65	Medium Stiff	4 to 8	500-1000
Dense	30 to 50	65-85	Stiff	8 to 15	1000-2000
Very Dense	over 50	85-100	Very Stiff	15 to 30	2000-4000
			Hard	over 30	> 4000


GUAM Project No.:

OYO CORPO	DRATION, PACIFIC
TUMON	GUAM

PLASTICITY CHART AND SOIL CONSISTENCY GUIDE Project Name: **Proposed UOG Engineering Building** Project Location: Mangilao, Guam

210040

PLATE No. 1 of 5

SYMBOL	LOCATION	DEPTH LL	PL	PI	CLASSSIFICATION	
		FEET				
	B-02/S-3	3.25-4.50	NP	NP	NP	SILT (ML)
	B-02/S-7	9.25-10.00	NP	NP	NP	SILT (ML)
	B-02/S-10	25.00-25.13	NP	NP	NP	SILT (ML)
X	B-03/S-3	3.00-4.25	NP	NP	NP	SILT (ML)
•	B-03/S-6	7.50-9.00	NP	NP	NP	SILT (ML)

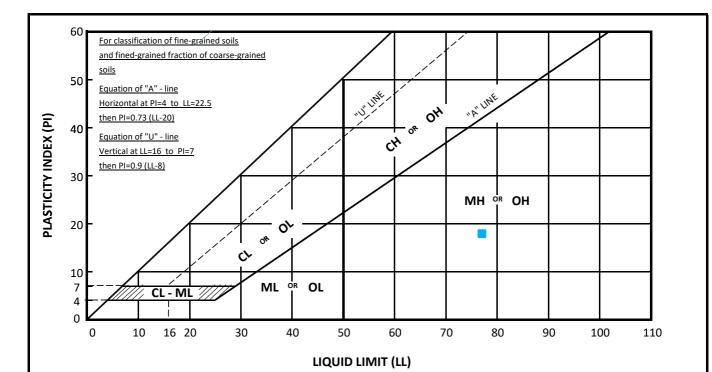
Soil Consistency Guide

с	OHESSIONLESS SOI	LS	COHESSIVE SOILS			
Density	Approximate N, (blows/ft.) Relative Density, (%)		Consistency	N, (blows/ft.)	Approximate Undrained Shear Strength, (psf)	
Very Loose	0 to 4	0-15	Very Soft	0 to 2	< 250	
Loose	4 to 10	15-35	Soft	2 to 4	250-500	
Medium Dense	10 to 30	35-65	Medium Stiff	4 to 8	500-1000	
Dense	30 to 50	65-85	Stiff	8 to 15	1000-2000	
Very Dense	over 50	85-100	Very Stiff	15 to 30	2000-4000	
			Hard	over 30	> 4000	

Project Name:

GUAM Project No.:

Project Location: Mangilao, Guam


OYO CORPO	DRATION, PACIFIC
TUMON	GUAM

PLASTICITY CHART AND SOIL CONSISTENCY GUIDE

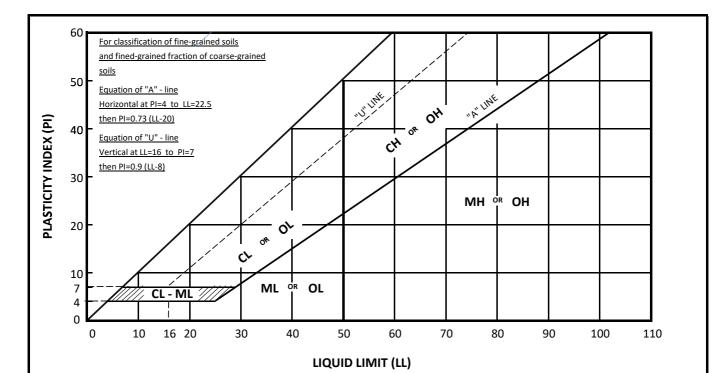
Proposed UOG Engineering Building

2 of 5

PLATE No.

SYMBOL	LOCATION	DEPTH FEET	LL	PL	PI	CLASSSIFICATION
	B-03/S-9	15.00-16.50	NP	NP	NP	SILT (ML)
	B-03/S-12	45.00-46.50	NP	NP	NP	SILT (ML)
	B-04/S-1	0.00-1.50	77	59	18	ELASTIC SILT (MH)
X	B-04/S-5	6.00-6.33	NP	NP	NP	SILT (ML)
•	B-04/S-8	10.50-12.00	NP	NP	NP	SILT (ML)

Soil Consistency Guide


с	OHESSIONLESS SOI	LS	COHESSIVE SOILS			
Density	Approximate N, (blows/ft.) Relative Density, (%)		Consistency	N, (blows/ft.)	Approximate Undrained Shear Strength, (psf)	
Very Loose	0 to 4	0-15	Very Soft	0 to 2	< 250	
Loose	4 to 10	15-35	Soft	2 to 4	250-500	
Medium Dense	10 to 30	35-65	Medium Stiff	4 to 8	500-1000	
Dense	30 to 50	65-85	Stiff	8 to 15	1000-2000	
Very Dense	over 50	85-100	Very Stiff	15 to 30	2000-4000	
			Hard	over 30	> 4000	

GUAM Project No.:

OYO CORPORATION, PACIFIC

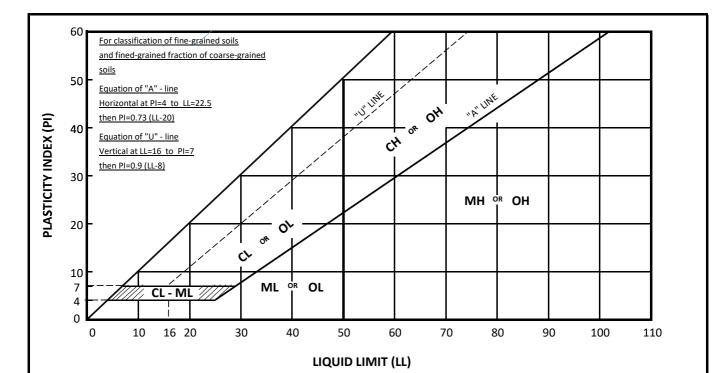
210040

PLATE No.

SYMBOL	LOCATION	DEPTH LL PL		PL	PI	CLASSSIFICATION
		FEET				
	B-04/S-12	45.00-46.50	NP	NP	NP	SILT (ML)
	B-05/S-4	4.75-6.25	NP	NP	NP	SILT (ML)
	B-05/S-7	9.25-10.75	NP	NP	NP	SILT (ML)
X	B-05/S-11	35.00-36.50	NP	NP	NP	SILT (ML)
•	B-06/S-4	4.50-4.92	NP	NP	NP	SILT (ML)

Soil Consistency Guide

с	OHESSIONLESS SOI	LS	COHESSIVE SOILS			
Density	N, (blows/ft.)	(blows/ft.) Approximate (blows/ft.) Relative Density, (%)		N, (blows/ft.)	Approximate Undrained Shear Strength, (psf)	
Very Loose	0 to 4	0-15	Very Soft	0 to 2	< 250	
Loose	4 to 10	15-35	Soft	2 to 4	250-500	
Medium Dense	10 to 30	35-65	Medium Stiff	4 to 8	500-1000	
Dense	30 to 50	65-85	Stiff	8 to 15	1000-2000	
Very Dense	over 50	85-100	Very Stiff	15 to 30	2000-4000	
			Hard	over 30	> 4000	


OYO CORPORATION, PACIFIC	

TUMON

PLASTICITY CHART AND SOIL CONSISTENCY GUIDE Project Name: Proposed UOG Engineering Building Project Location: Mangilao, Guam

210040

PLATE No.	•
4 of 5	

SYMBOL LOCA	LOCATION	DEPTH	ш	PL	PI	CLASSSIFICATION
		FEET				
	B-06/S-7	9.00-9.42	NP	NP	NP	SILT (ML)
		15.00-16.00				
		0.00-1.50				
X		43.50-44.25				
		6.00-7.50				

Soil Consistency Guide

с	OHESSIONLESS SOI	LS	COHESSIVE SOILS			
Density	N, (blows/ft.)	Approximate Relative Density, (%)	Consistency	N, (blows/ft.)	Approximate Undrained Shear Strength, (psf)	
Very Loose	0 to 4	0-15	Very Soft	0 to 2	< 250	
Loose	4 to 10	15-35	Soft	2 to 4	250-500	
Medium Dense	10 to 30	35-65	Medium Stiff	4 to 8	500-1000	
Dense	30 to 50	65-85	Stiff	8 to 15	1000-2000	
Very Dense	over 50	85-100	Very Stiff	15 to 30	2000-4000	
			Hard	over 30	> 4000	

OYO

TUMON

OYO CORPORATION, PACIFIC

PLASTICITY CHART AND SOIL CONSISTENCY GUIDE Project Name: Proposed UOG Engineering Building Project Location: Mangilao, Guam

210040

5 of 5

PLATE No.

Project Name:	Proposed UG)G Engine	ering Buil	ding					
Project No.:	210040	Client	: SSFM	Internation			Dat)-Feb-22
Location: Ma	ngilao, GU				Depth	6.25-6.6	7 ft Sam	ple No.:	B-01/S-5
TEST METHO	D								
			1	LIQUID		4	-	(-
TE Initial gauge read	ST NO.	mm	1	2	3	4	5	6	7
Final gauge readi		mm							
Average Penetrat		mm							
Container no.									
Mass of wet soil		g							
Mass of dry soil		g							
Mass of containe Mass of moisture		g							
Mass of dry soil	;	g g							
Moisture content		%							
Number of Blow		-							
80								QUIPMENT U	USED
						Plastic	imit ·	and Rolled	D. I. I.
75						Liquid		echanical Rolling anual	g Device X
(%)						Appara		echanical	x
Vater Content, w (%)						Casagra	ande M	etal	Х
ent,						Groovi	ng Tool: Pla	astic	
6 5							SDECIMEN	PREPARAT	ION
5						Wet		d on #40 Sieves	
ate						Dry (Ai	ir) Dry Sie	eve on #40 Sieve	e X
× 60						Dry (O	,	Pushed Through	
						Mixed Sand Pa	on Glass Plate an	d Removed Med	lium Plus
55						Salid 1 a		ing Water :	
						Distill		nineralized	Other:
50	i								
5		Numb	er of Blows	50)	Liq	uid Limit, Ll	L (%) No	on-Plastic
		NUTTO	el ul biows			-			
				PLASTIC		_			
TE	ST NO.		1	2	3	4	5	6	7
Mass of wet soil	+ container	α –							
Mass of dry soil		g					1		
Mass of containe		g							
Mass of moisture	;	g							
Mass of dry soil		g							
Moisture content		g							
Plastic Limit, Pl	」(%) 」				ſ	Non-Plastic	;		
Plasticity Index, PI (%)						Non-Plastic	;		
	tory test results relat	e only on the it	tems tested and	this report shall				roval of this I ah	ooratory.
Remarks:	,	, <i>»</i> .		1	r	1	r • PP	240	,
Tested by:	R. Cagu	in	_						
Checked by:	E. Segismu	Indo	1	Approved	by: T.	Krasovec			

Project Nam	e: Proposed U	OG Engi	neering B	uilding					
Project No.:	210040	Clier	nt: SSF	M Internation			-		-Feb-22
Location:	Mangilao, GU				Depth:	15.00-16	5.42 ft San	nple No.:	B-01/S-9
TEST MET	HOD								
				LIQUID			-	-	-
	TEST NO.		1	2	3	4	5	6	7
Initial gauge r		mm							
Final gauge re Average Pene		mm mm							
Container no.	diation								
	oil + container	g							
	oil + container	g							
Mass of conta		g							
Mass of moist		g							
Mass of dry so Moisture cont		g %		+ +				-	
Number of Bl		-							
80						ם ר		EQUIPMENT U	ISED
						Plastic	l imit ·	Iand Rolled	D. i
75						Liquid		Iechanical Rolling	Device X
(%)						Appara		Allechanical	x
Water Content, w (%) 09 29 09 01						Casagra		letal	Х
ent,						Groovi	ng Tool: P	lastic	
65 ·····							SPECIME	N PREPARATI	ION
L C C						Wet :		ed on #40 Sieves	
09 Vate						Dry (A	,	Sieve on #40 Sieve	Х
> 00						Dry (O	,	. Pushed Through	DI
						Sand Pa		nd Removed Med	ium Plus
55								ixing Water :	
						Distil	led: De	emineralized	Other:
50 L		;		50					
5		Num	ber of Blo			Liq	uid Limit, L	L(%) No	n-Plastic
	TEST NO.		1	PLASTIC 2	LIMIT 3	4	5	6	7
	ILSI NO.		1	2	5		5	0	/
Mass of wet s	oil + container	g							
	oil + container	g							
Mass of conta		g							
Mass of moist		g							
Mass of dry so Moisture cont		g g		+ +				-	
Plastic Limit	, PL (%)	5			N	on-Plastic	;		
Plasticity Ind	lex, PI (%)				N	on-Plastic	;		
* All la	boratory test results rela	te only on the	e items tested	and this report shall	not be reproduced e	except in full a	nd with prior ap	proval of this Labo	oratory.
Remarks:									
Tested by:	R. Cagu	ıin	_						
Checked by:	E. Segism	undo		Approved	by: <u> </u>	Krasovec			

Project Name:	Proposed U	OG Engine	ering Buil	ding								
Project No.:	210040	Client	: SSFM	Internatio	nal		Dat	e: 10-	Feb-22			
Location: Ma	angilao, GU				Depth	n: 35.00-30	6.50 ft Samp	le No.:	B-01/S-13			
TEST METHO	D											
TEST METHO				LIQUID	LIMIT							
TE	EST NO.		1	2	3	4	5	6	7			
Initial gauge read		mm										
Final gauge read		mm										
Average Penetrat Container no.	tion	mm										
Mass of wet soil	+ container	σ										
Mass of dry soil		g g			1							
Mass of containe		g										
Mass of moisture	e	g										
Mass of dry soil		g										
Moisture content Number of Blow		%										
Nulliber of Blow	8	-										
80		: :	: :				TESTING EC	UIPMENT U	SED			
						Plastic	Ha	nd Rolled				
75							Me	chanical Rolling	Device X			
						Liquid		nual chanical	×			
≥ ≥ 70									X X			
Vater Content, w (%)							ng Tool: Pla	stic				
ntei												
6 5						Wet :		PREPARATION on #40 Sieves	ON			
iter			Dry (Air) Dry Sieve on #40 Sieve						х			
8 60							Dry (Oven) x Mech. Pushed Through					
							Mixed on Glass Plate and Removed Medium Plus Sand Particles					
55						Sand P		Mixing Water :				
						Distil		ineralized	Other:			
50												
5		Numb	er of Blows	5	0	Liq	uid Limit, LL	(%) Nor	-Plastic			
		Numb	el ol blows						_			
				PLASTIC								
	EST NO.		1	2	3	4	5	6	1			
Mass of wet soil	+ container	g										
Mass of dry soil		g										
Mass of containe		g										
Mass of moisture	e	g										
Mass of dry soil		g										
Moisture content Plastic Limit, Pl		g				Non-Plastic	<u> </u>					
Tastic Linnt, T	L (/0)											
Plasticity Index, PI (%)						Non-Plastic	C					
* All labora	atory test results relat	te only on the it	ems tested and	this report shal	l not be reproduce	d except in full a	nd with prior appr	oval of this Labo	ratory.			
Remarks:				-	-	_	_					
Tested by:	R. Cagu	iin										
·			-	A	1 6.7. 7	Kroosvor						
Checked by:	E. Segismu	UNUU		Approved	. Jy	. Krasovec						

Project Name:	Proposed U	OG Engine	ering Buil	ding							
Project No.:	210040	Client	: SSFM	Internatio	nal		Dat	e: 10-	Feb-22		
Location: Ma	angilao, GU				Depth	: 50.00-51	1.50 ft Samp	le No.:	B-01/S-16		
TEST METHO	D.										
TEST METHO				LIQUID	LIMIT						
TE	EST NO.		1	2	3	4	5	6	7		
Initial gauge read		mm									
Final gauge read		mm									
Average Penetrat	tion	mm									
Container no.	1	~ -									
Mass of wet soil Mass of dry soil		g g			1		1		-		
Mass of containe		g g					1				
Mass of moisture		g									
Mass of dry soil		g					1				
Moisture content		%									
Number of Blow	'S	-									
80							TECTING EC		(ED		
80							TESTING EQ	d Rolled	SED		
						Plastic	Limit	chanical Rolling	Device X		
75						Liquid		nual			
%) /								chanical	X		
× 70 د ک						Casagr Groovi	ande Me ng Tool: Pla		X		
ten											
Vater Content, w (%)						N PREPARATION					
er (Wet: Washed on #40 Sieves						X		
00 Vat							Dry (Air) Dry Sieve on #40 Sieve X Dry (Oven) x Mech. Pushed Through Mixed on Glass Plate and Removed Medium Plus				
-											
55						Sand P					
							Mixing Water :				
50						Distil	led: Dem	ineralized	Other:		
5				50	0	Lia	uid Limit, LL	(%) Nor	-Plastic		
		Numb	er of Blows				ulu Ellinit, EL				
				PLASTIC	CLIMIT						
TE	EST NO.		1	2	3	4	5	6	7		
Mass of wet soil		g									
Mass of dry soil Mass of containe		g g			1		1		ł		
Mass of moisture		g g					1				
Mass of dry soil	-	g									
Moisture content		g									
Plastic Limit, Pl	L (%)					Non-Plastic					
Plasticity Index, PI (%)						Non-Plastic	2				
		to only on the it	ame tootad and	this report at -1				oval of this I at -	rotora		
* All labora	atory test results relat	te only on the it	eins tested and	uns report shal	i not be reproduced	i except in full a	na with prior appr	oval of this Labo	ratory.		
	P A										
Tested by:	R. Cagu		-								
Checked by:	E. Segismu	undo	-	Approved	l by: <u> </u>	. Krasovec					

Project Name:	Proposed U	OG Engino	eering Buil	lding							
Project No.:	210040	Client	ient: SSFM International					Date: 10-Feb-2			
Location: Ma	angilao, GU				Depth	n: 0.25-1.6	7 ft Sam	ple No.:	B-02/S-1		
TEST METHO	D										
		r		LIQUID			_		-		
	EST NO.		1	2	3	4	5	6	7		
Initial gauge read Final gauge read		mm mm									
Average Penetra		mm									
Container no.											
Mass of wet soil		g							-		
Mass of dry soil Mass of containe		g g							1		
Mass of moisture		g									
Mass of dry soil		g									
Moisture content	t	%									
Number of Blow	'S	-									
80		:					TESTING EG	QUIPMENT U	SED		
						Plastic	Ha	nd Rolled			
75							Me	echanical Rolling	Device X		
(%						Liquid Appara		nual chanical	x		
≥ 70 ·····						Casagra		etal	X		
ent,						Groovi	ng Tool: Pla	istic			
6 5							SPECIMEN	PREPARATI	ON		
er C						Wet :		d on #40 Sieves			
Vater Content, w (%) 09 09						Dry (A	,	eve on #40 Sieve	Х		
>						5 (ven) x Mech. on Glass Plate an	Pushed Through d Removed Medi	um Plus		
55						Sand Pa	articles				
								ing Water :			
50						Distil	led: Der	nineralized	Other:		
5				50)	Lia	uid Limit, LI	(%) No	n-Plastic		
		Numb	er of Blows			219	ura Ennių Er				
				PLASTIC							
TE	EST NO.		1	2	3	4	5	6	7		
Mass of wet soil	+ container	g									
Mass of dry soil		g									
Mass of containe		g									
Mass of moisture	e	g ~							-		
Mass of dry soil Moisture content	t i	g g									
Plastic Limit, P		8				Non-Plastic	;				
	DI (0/)					Non Diretia					
Plasticity Index						Non-Plastic					
* All labora Remarks:	atory test results rela	te only on the i	tems tested and	l this report shall	not be reproduce	d except in full a	nd with prior app	roval of this Labo	ratory.		
Tested by:	R. Cagu		-								
Checked by:	E. Segismu	undo	_	Approved	by: T	. Krasovec					

Project Name:	Proposed U	OG Engine	ering Buil	ding					
Project No.:	210040	Client	: SSFM	Internation	nal		Dat		Feb-22
Location: Ma	angilao, GU				Depth	3.25-4.5	0 ft Sam	ole No.:	B-02/S-3
TEST METHO	D								
				LIQUID			_		-
	ST NO.		1	2	3	4	5	6	7
Initial gauge read Final gauge read		mm mm			 				
Average Penetrat		mm							
Container no.									
Mass of wet soil		g							
Mass of dry soil		g							
Mass of containe		g							
Mass of moisture Mass of dry soil	2	g g							
Moisture content		g %							
Number of Blow	S	-							
	-								
80						¬ [TESTING EQ	UIPMENT U	SED
						Plastic	imit ·	nd Rolled	
75							Me	chanical Rolling	Device X
(%						Liquid Appara		nual chanical	x
Vater Content, w (%) 09 09 09						Casagra			x
nt,						Groovii	ng Tool: Pla	stic	
nte							000 000 000		
6 5						 Wet :		PREPARATI 1 on #40 Sieves	ON
ater						Dry (Ai		ve on #40 Sieve	x
6 60						Dry (O		Pushed Through	
							on Glass Plate and	l Removed Media	um Plus
55						Sand Pa		ng Water :	
						Distill		nineralized	Other:
50						Distin	bu. Den	mieranzea	ouldr.
5			()	50)	Lia	uid Limit, LI	(%) Nor	-Plastic
		Numb	er of Blows				,		
				PLASTIC	C LIMIT				
TE	ST NO.		1	2	3	4	5	6	7
		~ –							-
Mass of wet soil Mass of dry soil		g g			 				1
Mass of containe		g g							
Mass of moisture		g							
Mass of dry soil		g							
Moisture content		g							
Plastic Limit, Pl	L (%)				1	Ion-Plastic	;		
Plasticity Index.	PI (%)					Ion-Plastic			
		I							
* All labora	tory test results rela	te only on the it	ems tested and	this report shall	not be reproduced	except in full a	nd with prior appr	oval of this Labo	ratory.
Remarks:									
	5.0								
Tested by:	R. Cagu	lin	-						
Checked by:	E. Segismu	undo	-	Approved	by: T.	Krasovec			

Project Name:	: Proposed U	OG Engiı	neering Bu	uilding					
Project No.:	210040	Clier	nt: SSF	M Internation					-Feb-22
Location: N	Mangilao, GU				Depth:	9.25-10.	00 ft San	nple No.:	B-02/S-7
TEST METH	IOD								
		Ī		LIQUID I			-		
	TEST NO.		1	2	3	4	5	6	7
Initial gauge re Final gauge rea		mm mm		+ +				_	
Average Peneti		mm							
Container no.									
Mass of wet so		g							
Mass of dry so		g							
Mass of contain Mass of moistu		g g							
Mass of dry so		g							
Moisture conte	ent	%							
Number of Blo	WS	-							
80	÷						TESTINC	EQUIPMENT U	ISED
						Dist	1	Hand Rolled	GED
75						Plastic	1	Mechanical Rolling	Device X
						Liquid Appara		Manual Mechanical	
≥ ≥ 70						Casagra		Metal	X
nt, i						Groovi	ng Tool: I	Plastic	
65							SDECIME	N PREPARAT	ION
0,03						Wet :		ned on #40 Sieves	
Vater Content, w (%) 09 09 02						Dry (Ai		Sieve on #40 Sieve	х
> 00						Dry (O		n. Pushed Through and Removed Med	Dhar
						Sand Pa		and Removed Med	ium Pius
55							М	ixing Water :	
50						Distill	led: D	emineralized	Other:
5				50				T (0/)	Disstic
		Num	ber of Blov	/S		Lìq	uid Limit, I	LL (%) NO	n-Plastic
				PLASTIC	LIMIT				
]	FEST NO.		1	2	3	4	5	6	7
M	11	~ -		+				-	
Mass of wet so Mass of dry so		g g		+					
Mass of contain	ner	g							
Mass of moistu	ıre	g							
Mass of dry so		g							
Moisture conte Plastic Limit,		g			I	Ion-Plastic	<u> </u>		
Thastic Linni,	1 L (/0)								
Plasticity Inde	ex, PI (%)				N	Ion-Plastic	;		
* All lab	oratory test results rela	te only on the	items tested a	nd this report shall r	ot be reproduced of	except in full a	nd with prior a	proval of this Lab	oratory.
Remarks:				-	-	-		-	
Tested by:	R. Cagu	lin	_						
Checked by:	E. Segism	undo	_	Approved	oy: <u> </u>	Krasovec			

Project Name: Proposed U	OG Enginee	ring Bui	lding					
Project No.: 210040	Client:	SSFM	I Internationa	ıl		Date	e: <u>1</u> 0-	Feb-22
Location: Mangilao, GU				Depth:	25.00-25	.13 ft Samp	le No.:	B-02/S-10
TEST METHOD								
			LIQUID L	IMIT				
TEST NO.		1	2	3	4	5	6	7
Initial gauge reading	mm							
Final gauge reading	mm							
Average Penetration Container no.	mm							
Mass of wet soil + container	g							
Mass of dry soil + container	g							
Mass of container	g							
Mass of moisture	g							
Mass of dry soil	g							
Moisture content Number of Blows	%							
Number of Blows	-							
80 :						TESTING EQ	UIPMENT US	SED
					Plastic 1	Han	d Rolled	
75						Mee	chanical Rolling I	Device X
					Liquid I Apparat		nual chanical	
≥°. ≥ 70					Casagra			X X
00 02 02 02 02 03 09 09 00 00 00 00 00 00 00 00 00 00 00					Groovir		stic	
ute .								
6 5					Wet :		PREPARATION on #40 Sieves	<u>ON</u>
ater					Dry (Ai		ve on #40 Sieve	x
6 0					Dry (Ov		ushed Through	
						on Glass Plate and	Removed Mediu	ım Plus
55					Sand Pa		ng Water :	
					Distill	1 1	ineralized	Other:
50								
5	Number	of Blows	50		Liq	uid Limit, LL	(%) Non	-Plastic
	Number	UI DIUWS						
TEGE NO			PLASTIC I		4	-		
TEST NO.		1	2	3	4	5	6	1
Mass of wet soil + container	g							
Mass of dry soil + container	g							
Mass of container	g							
Mass of moisture	g							
Mass of dry soil	g							
Moisture content Plastic Limit, PL (%)	g			N	on-Plastic			
Tastic Linni, TL (78)						•		
Plasticity Index, PI (%)				N	on-Plastic			
* All laboratory test results rela	te only on the iten	is tested and	d this report shall no	ot be reproduced e	xcept in full a	nd with prior appr	oval of this Labor	ratory
	sing on the item		report blan in		ept ar run ar	prior appro	or and Eabor	
Remarks:								
Tested by: R. Cagu	iin							
Checked by: E. Segism	undo		Approved b	y: <u>T.</u> ł	Krasovec			

Project Name:	Proposed U	OG Engi	neering B	uilding					
Project No.:	210040	Clie	nt: SSF	M Internatio					-Feb-22
Location: M	angilao, GU				Depth	: 3.00-4.2	25 ft Sai	nple No.:	B-03/S-3
TEST METHO)D								
				LIQUID			_		_
	EST NO.		1	2	3	4	5	6	7
Initial gauge rea Final gauge read		mm mm							
Average Penetra		mm							
Container no.	lition								
Mass of wet soil	l + container	g							
Mass of dry soil		g							
Mass of contain		g							
Mass of moistur		g							
Mass of dry soil Moisture conten		g %							
Number of Blov		-							
80							TESTING	EQUIPMENT U	SED
						Plastic	l imit ·	Hand Rolled	
75						Limid		Mechanical Rolling Manual	Device X
(%								Mechanical	х
Water Content, w (%) 09 09						Casagi		Metal	X
int,						Groov	ing Tool:	Plastic	
6 5							SDECIMI	EN PREPARATI	ON
2 C						Wet :		hed on #40 Sieves	
ate						Dry (A	ir) Dry	Sieve on #40 Sieve	х
× 60						Dry (C	,	h. Pushed Through	
							on Glass Plate Particles	and Removed Medi	um Plus
55						June 1		lixing Water :	
						Disti		Demineralized	Other:
50								I	
5		Nur	ber of Blo		0	Liq	uid Limit,	LL (%) No	n-Plastic
				PLASTIC					
1	EST NO.		1	2	3	4	5	6	7
Mass of wet soil	+ container	g							
Mass of dry soil		g							
Mass of contain		g			1				
Mass of moistur		g							
Mass of dry soil		g							
Moisture conten Plastic Limit, P		g				Non-Plasti			
Tiasue Linni, T	L (/0)					14011-1 1050	с		
Plasticity Index	a, PI (%)					Non-Plasti	C		
* All labor	atory test results rela	te only on the	e items tested	and this report shal	l not be reproduced	except in full	and with prior a	nproval of this I abo	pratory
Remarks:	anory was results feld	te only on the	e neme testeu	und und report sha	. list be reproduced			PP-0 var of uns Labo	
Tested by:	R. Cagu	iin							
Checked by:	E. Segism	undo		Approved	d by: <u> </u>	. Krasovec			

Project Name:	Proposed U	OG Enginee	ering Buil	ding					
Project No.:	210040	Client:	SSFM	Internation	nal		Da	ite: 11	-Feb-22
Location: N	Iangilao, GU				Depth:	7.50-9.00) ft Sam	ple No.:	B-03/S-6
TEST METH	OD								
				LIQUID			_		_
	EST NO.		1	2	3	4	5	6	7
Initial gauge rea Final gauge rea		mm mm						-	1
Average Penetr		mm							
Container no.									
Mass of wet so		g							
Mass of dry soi		g							
Mass of contair Mass of moistu		g g							
Mass of dry soi		g							
Moisture conter	nt	g %							
Number of Blo	WS	-							
80							TESTINC F	QUIPMENT U	SFD
00							Н	and Rolled	SED
75						Plastic I	Ν	lechanical Rolling	Device X
						Liquid I		Ianual Iechanical	X
<u>s</u> 70						Apparat Casagra		fetal	X
nt, v						Groovin		lastic	
65 mm							CDE CIL IEI		
S S						Wet :		N PREPARATI ed on #40 Sieves	ON
Vater Content, w (%) 09 09 02						Dry (Ai		ieve on #40 Sieve	Х
8 60 ·····						Dry (Ov		Pushed Through	DI
						Mixed o Sand Pa		nd Removed Medi	um Plus
55								xing Water :	
50						Distill	ed: De	emineralized	Other:
50 L		· · ·		50)				
		Numbe	r of Blows			Liq	uid Limit, L	L (%) NO	n-Plastic
				PLASTIC	LIMIT				
Т	EST NO.		1	2	3	4	5	6	7
		~ -						-	
Mass of wet so Mass of dry soi		g						-	1
Mass of contair		g							
Mass of moistu	re	g							
Mass of dry soi		g							
Moisture conter Plastic Limit,		g			N	lon-Plastic			
I lastic Linnt, I									
Plasticity Inde	x, PI (%)				N	Ion-Plastic			
* All labo	oratory test results rela	te only on the ite	ms tested and	this report shall	not be reproduced	except in full ar	d with prior ap	proval of this Labo	ratory.
Remarks:									
Tested by:	R. Cagu	ıin							
Checked by:	E. Segism	undo		Approved	by: <u> </u>	Krasovec			

Project Nam	e: Proposed U	OG Engiı	neering B	uilding					
Project No.:	210040	Clier	nt: SSF	M Internation					-Feb-22
Location:	Mangilao, GU				Depth:	15.00-16	5.50 ft San	nple No.:	B-03/S-9
TEST MET	HOD								
				LIQUID	LIMIT				
	TEST NO.		1	2	3	4	5	6	7
Initial gauge r		mm							
Final gauge re Average Pene		mm mm							
Container no.	diation								
	oil + container	g							
	oil + container	g							
Mass of conta		g							
Mass of moist Mass of dry s		g							
Moisture cont		g %							
Number of Bl		-							
								-	
80						ר 🥅		EQUIPMENT U	ISED
						Plastic	l imit ·	Iand Rolled Aechanical Rolling	Daviaa X
75						Liquid		/anual	Device X
(%)								Aechanical	х
₹ 70						Casagr		Aetal	x
ent						Groovi	ng Tool: F	lastic	
to 65							SPECIME	N PREPARAT	ION
er C						Wet :		ed on #40 Sieves	
Water Content, w (%) 09 29 01 02						Dry (A		Sieve on #40 Sieve	х
>						Dry (O Mixed	1	. Pushed Through and Removed Med	ium Plus
55						Sand P		ina reenio vea mea	uni i lus
33							М	ixing Water :	
50						Distil	led: D	emineralized	Other:
5				50					Distin
		Num	ber of Blov	vs		Liq	uid Limit, I	L(%) NO	n-Plastic
				PLASTIC	LIMIT				
	TEST NO.		1	2	3	4	5	6	7
	oil + container	g							
Mass of dry so Mass of conta	oil + container	g o		+ +				-	
Mass of moist		g g		1 1					
Mass of dry s		g							
Moisture cont	tent	g							
Plastic Limit	, PL (%)				N	lon-Plastic)		
Plasticity Ind	lex, PI (%)				N	lon-Plastic	;		
	boratory test results rela	te only on the	tems tested	and this report shall	not be reproduced e	except in full a	nd with prior ar	proval of this I ab	oratory
Remarks:	solutory test results rea	te only on the	i nomb tested t	and this report sharin	liot de reproduced e	except in fun u	na wini prior up	provar of this Euco	sintory.
Tested by:	R. Cagu	lin							
Checked by:	E. Segism	undo		Approved	by: <u> </u>	Krasovec			

Project Name	: Proposed U	OG Enginee	ring Bui	lding					
Project No.:	210040	Client:	SSFM	I Internationa	l		I	Date: 11	-Feb-22
Location: I	Mangilao, GU				Depth:	45.00-46	6.50 ft Sa	mple No.:	B-03/S-12
TEST METH	IOD								
				LIQUID L					
	TEST NO.		1	2	3	4	5	6	7
Initial gauge rea		mm mm							
Average Penet		mm							
Container no.									
Mass of wet so		g							
Mass of dry so		g							
Mass of contai Mass of moist		g							
Mass of dry so		g o							
Moisture conte		g %							
Number of Blo	ows	-							
80									(CER)
80						ך		EQUIPMENT U Hand Rolled	ISED
						Plastic	Limit :	Mechanical Rolling	Device X
75						Liquid		Manual	
%) /						Appara		Mechanical	X
Vater Content, w (%)						Casagra Groovin	ande ng Tool:	Metal Plastic	x
ten							5		<u> </u>
6 5								EN PREPARATI	ION
ter						Wet : Dry (A		shed on #40 Sieves V Sieve on #40 Sieve	x
6 60						Dry (O		ch. Pushed Through	
								e and Removed Medi	ium Plus
55						Sand Pa		Mixing Water :	
						Distil		Demineralized	Other:
50						Distri	icu.	Deminerunized	ouldr.
5		Numbo	r of Blows	. 50		Liq	uid Limit,	LL (%) No	n-Plastic
		Numbe	I OI DIOWS						
,	TEST NO.		1	PLASTIC I	<u>JMIT</u> 3	4	5	6	7
	ilsi no.		1	2	5	4	5	0	/
Mass of wet so	oil + container	g							
Mass of dry so		g							
Mass of contai		g							
Mass of moist Mass of dry so		g							
Moisture conte		g							
Plastic Limit,		8			N	on-Plastic	>		
Plasticity Ind	ov DI (0/.)				N	on-Plastic	<u>,</u>		
* All lab	ooratory test results rela	te only on the ite	ms tested and	d this report shall no	ot be reproduced e	except in full a	nd with prior	approval of this Labo	oratory.
Tested by:	R. Cagu	lin							
Checked by:	E. Segism	undo		Approved b	y: <u> </u>	Krasovec			

Project Name: Proposed U	0							
Project No.: 210040	Clie	nt: SSFM	Internation				Date:	11-Feb-22
Location: Mangilao, GU				Depth:	0.00-1.5	0 ft S	ample No.:	B-04/S-1
FEST METHOD								
			LIQUID	LIMIT				
TEST NO.		1	2	3	4	5	6	7
Initial gauge reading	mm	-	-	-				
Final gauge reading	mm	-	-	-				
Average Penetration	mm	-	-	-			_	
Container no.	~	LL1 31.99	LL2 33.38	LL3 32.82				
Mass of wet soil + container	g	27.02	27.98	27.76				
Mass of dry soil + container Mass of container	g g	21.02	21.00	21.02		-		
Mass of moisture	g g	4.97	5.40	5.06				
Mass of dry soil	g g	6.00	6.98	6.74				
Moisture content	%	82.83	77.36	75.07				
Number of Blows	-	13	23	34				
90					ר 🗆	TESTIN	G EQUIPMEN	T USED
					Plastic	Limit ·	Hand Rolled	
							Mechanical Ro	lling Device X
G ⁸⁵					Liquid		Manual Mechanical	X
6) ^	0.				Casagr	tus No.	Metal	X
Water Content, w (%)						ng Tool:	Plastic	^
08 te		· · · · · · · · · · · · · · · · · · ·	= -8.181ln(x) +	103 59		0		
8 77 4		<u> </u>		103.33			IEN PREPAR	
a 75			··.o		Wet :		ashed on #40 Sie	
/at					Dry (A		ry Sieve on #40 S	
>					Dry (O Mixed		ech. Pushed Thro te and Removed M	
70					Sand P		te and Kenioved I	viculuiii Flus
							Mixing Water :	
					Distil	led: x	Demineralized	Other:
65								
5		25	50	0	Lia	uid Limit	LL (%)	77
	Nun	nber of Blows						
			PLASTIC	C LIMIT				
TEST NO.		1	2	3	4	5	6	7
		27.17	07.00	26.07				
Mass of wet soil + container	g	27.47	27.00	26.97				
Mass of dry soil + container	g	25.09	24.79	24.79				
Mass of container	g	21.01	21.05	21.05				
Mass of moisture	g	2.38 4.08	2.21 3.74	2.18 3.74				
Mass of dry soil Moisture content	g g	58.33	59.09	58.29		+		
Plastic Limit, PL (%)	Б	50.55	57.07	50.29	59	1		
instructioning i Li (70)								
Plasticity Index, PI (%)					18			
* All laboratory test results rela							1.6	

Remarks:

Tested by:

R. Caguin Checked by: E. Segismundo

Approved by: T. Krasovec

Project Name	: Proposed U	OG Enginee	ering Bui	lding					
Project No.:	210040	Client:	SSFM	I Internation:	al		D	ate: 11	-Feb-22
Location: I	Mangilao, GU				Depth:	6.00-6.3	3 ft Sa	mple No.:	B-04/S-5
TEST METH	IOD								
				LIQUID I					
	TEST NO.		1	2	3	4	5	6	7
Initial gauge rea		mm mm							
Average Penet		mm							_
Container no.	rution								
Mass of wet so	oil + container	g							
Mass of dry so		g							
Mass of contai		g							
Mass of moist Mass of dry so		g							_
Moisture conte		g %							+
Number of Blo		-							
							-		
80						ר 🖂	TESTING	EQUIPMENT U	JSED
						Plastic 1	Limit :	Hand Rolled	
75						 Liquid I	limit .	Mechanical Rolling Manual	Device X
(%						Apparat		Mechanical	x
Vater Content, w (%)						Casagra		Metal	X
ent,						Groovir	ng Tool:	Plastic	
65							SDECIM	EN PREPARATI	ION
0,00						Wet :		shed on #40 Sieves	
ate						Dry (Ai	r) Dry	Sieve on #40 Sieve	х
8 60						Dry (Ov	1	ch. Pushed Through	
						Mixed o Sand Pa		and Removed Med	ium Plus
55						Sund I t		Aixing Water :	
						Distill		Demineralized	Other:
50	i								
5		Numbe	r of Blows	50		Liq	uid Limit,	LL (%) No	n-Plastic
,	TEGT NO		1	PLASTIC		4	5		7
	TEST NO.		1	2	3	4	5	6	7
Mass of wet so	oil + container	g							
Mass of dry so		g							
Mass of contai	ner	g							
Mass of moist		g							
Mass of dry so		g							+
Moisture conte Plastic Limit,		g			N	on-Plastic			_
T lastic Linnt,	1 L (70)						,		
Plasticity Inde	ex, PI (%)				N	on-Plastic	;		
* All lab	ooratory test results rela	te only on the ite	ms tested an	d this report shall n	ot be reproduced e	except in full a	nd with prior	approval of this Lab	oratory
Remarks:	oratory test results rela	the only on the ne	ins tested an	a ans report shan n	or be reproduced e	except in fun a	ia with prior a	ipprovar of unis Labo	natory.
Tested by:	R. Cagu	ıin							
Checked by:	E. Segism	undo		Approved b	ру: <u> </u>	Krasovec			

Project Name	e: Proposed U	OG Engir	neering B	uilding					
Project No.:	210040	Clier	nt: SSF	M Internation			-		-Feb-22
Location:	Mangilao, GU				Depth:	10.50-12	2.00 ft San	nple No.:	B-04/S-8
TEST METH	IOD								
				LIQUID	LIMIT				
	TEST NO.		1	2	3	4	5	6	7
Initial gauge r		mm							
Final gauge re		mm							
Average Pener Container no.	ration	mm							
Mass of wet se	oil + container	g							
Mass of dry so		g							
Mass of conta	iner	g							
Mass of moist		g							
Mass of dry so		g							
Moisture cont Number of Bl		%						_	
Number of Br	5w8	_							
80							TESTING F	QUIPMENT U	ISED
						Distin	F	Iand Rolled	
75						Plastic	Ν	Iechanical Rolling	Device X
						Liquid		Ianual Iechanical	X
Water Content, w (%) 09 09						Appara Casagra		Aechanical Aetal	X
≥ 70						_		lastic	~
Iter									
6 5								N PREPARAT	ION
ter						Wet : Dry (A		ed on #40 Sieves Sieve on #40 Sieve	x
6 0 M						Dry (O	,	. Pushed Through	~
						Mixed	on Glass Plate a	nd Removed Med	ium Plus
55						Sand Pa			
								ixing Water :	
50						Distil	led: De	emineralized	Other:
5				50		Lia	uid Limit, L		n-Plastic
		Num	ber of Blov	WS			ulu Liiiit, L		
				PLASTIC	LIMIT				
	TEST NO.		1	2	3	4	5	6	7
Mass of wet so		g							
Mass of dry so		g							
Mass of conta Mass of moist		g g							
Mass of dry so		g							
Moisture cont		g							
Plastic Limit,	PL (%)	Ŭ			N	on-Plastic			•
Plasticity Ind	ov DI (0/)				N	on-Plastic			
* All lat	poratory test results rela	te only on the	items tested	and this report shall	not be reproduced e	except in full a	nd with prior ap	proval of this Lab	oratory.
Tested by:	R. Cagu	ıin							
Checked by:	E. Segism	undo	_	Approved	by: <u> </u>	Krasovec			

Project Nan	ne: Proposed U	OG Engi	neerii	ıg Bui	ilding									
Project No.:		Clie	nt:	SSFN	1 Intern	ational					ate:		Feb-22	
Location:	Mangilao, GU						Depth	: 45	5.00-46	50 ft Sa	mple	No.:	B-04/S-1	2
TEST MET	THOD													
						JID LI							-	
	TEST NO.		1		2		3		4	5		6	7	
Initial gauge		mm												
Final gauge i Average Pen		mm mm									_			
Container no														
	soil + container	g												
	soil + container	g												
Mass of cont		g												
Mass of moi		g												
Mass of dry Moisture cor	soil	g %												
Noisture cor Number of E	lows	70				_								
	10.03	_												
80										TESTING	EOUI	PMENT US	ED	
									Plastic 1	imit ·	Hand R			
75												nical Rolling I	Device X	
(%									Liquid I Apparat		Manual Mechar		х	- 1
Water Content, w (%) 09 29 02									Casagra		Metal	linear	X	
nt, i									Groovir		Plastic			
nte														-
6 5									Wet :			EPARATIC #40 Sieves	DN	- 1
iter									Dry (Ai			n #40 Sieve	x	
8 60									Dry (Ov			ed Through		
											and Re	moved Mediu	m Plus	
55									Sand Pa		/lixing V	Water ·		- 1
									Distill		Deminer	1	Other:	1
50									Distin		Jennier	unzeu	ouldr.	
5						50			Lia	uid Limit,	LL (%	6) Non	-Plastic	٦
		Nun	nber of	Blows	S				1)	C.	-/ -		-
					PLAS	TIC L	IMIT							
	TEST NO.		1		2		3		4	5		6	7	
	soil + container soil + container	g g												
Mass of cont		g												
Mass of moi		g												
Mass of dry	soil	g												
Moisture cor		g						_						
Plastic Limi	t, PL (%)						1	Non-	Plastic					
Plasticity In	dex, PI (%)						1	Non-	Plastic	;				
	laboratory test results relat	te only on th	e items t	rested on	d this repor	t shall not					nnroval	l of this Labor	atory	
Remarks:		c only on u		ested an	a ans repor	t shan not	be reproduced	слеер	t ini funi an		ippiovai		atory.	
Tested by:	R. Cagu	in												
Checked by:	E. Segismu	undo			Appro	oved by	: <u>т.</u>	Kras	sovec					

Project Name:	Proposed U	OG Engine	ering Buil	ding							
Project No.:	210040	Client:	SSFM	Internatio	nal		Da	te: 14	-Feb-22		
Location: Ma	angilao, GU				Depth	a: 4.75-6.2	5 ft Sam	ple No.:	B-05/S-4		
TEST METHO	D										
	2			LIQUID	LIMIT						
	ST NO.		1	2	3	4	5	6	7		
Initial gauge read		mm									
Final gauge read		mm mm									
Container no.	1011	111111									
Mass of wet soil	+ container	g									
Mass of dry soil		g									
Mass of containe		g									
Mass of moisture	2	g									
Mass of dry soil Moisture content		g %									
Number of Blow		- 70									
runioer of Blow	5										
80			: :				TESTING E	QUIPMENT U	SED		
						Plastic	l imit ·	and Rolled			
75							M	echanical Rolling	Device X		
(%						Liquid		anual echanical	x		
09 0.0 (%)						Casagr		etal	x		
nt,						Groovi	ng Tool: Pl	astic			
oute 65							CDE CH (E)				
S S						Wet :		N PREPARATI ed on #40 Sieves	ON		
ater						Dry (A		eve on #40 Sieve	x		
8 60						Dry (0	,	Pushed Through			
							on Glass Plate an articles	nd Removed Medi	um Plus		
55						Sand P		king Water :			
						Disti		mineralized	Other:		
50											
5		Numbe	er of Blows	50	0	Liq	uid Limit, L	L (%) No	n-Plastic		
		Numbe	ET OT DIOWS								
				PLASTIC	-	4					
18	ST NO.		1	2	3	4	5	6	7		
Mass of wet soil	+ container	g									
Mass of dry soil		g									
Mass of containe		g									
Mass of moisture	e	g									
Mass of dry soil		g									
Moisture content Plastic Limit, Pl		g				Non-Plasti					
I lastic Linni, I	L (/0)					11011-1 10511					
Plasticity Index.	, PI (%)		Non-Plastic								
	tory test results relat	e only on the ite	ems tested and	this report shall	l not be reproduce	d except in full a	nd with prior ap	proval of this Labo	pratory		
	and y test results relat	e only on the fit	ing tested and	and report sildi	. list be reproduce	a encope in full e	mai prior apj	sie var of uns Labo			
Remarks:											
Tested by:	R. Cagu	in									
Checked by:	E. Segismu	Indo		Approved	lby: T	. Krasovec					

Project Name:	Proposed U	OG Engin	eering Bu	ilding							
Project No.:	210040	Client	t: SSFN	I Internation				Date		-Feb-22	
Location: Ma	angilao, GU				Depth:	9.25-10.7	75 ft	Samp	le No.:	B-05/S-	7
TEST METHO	D										
				LIQUID			1		-		
	ST NO.		1	2	3	4		5	6	7	
Initial gauge read Final gauge read		mm									
Average Penetrat		mm mm									
Container no.	lion										
Mass of wet soil	+ container	g									
Mass of dry soil		g									
Mass of containe		g									
Mass of moisture Mass of dry soil	2	g									
Moisture content		g %									
Number of Blow		-									
80						ר –	TESTI		UIPMENT U	SED	
						Plastic L	.imit :		d Rolled chanical Rolling	Device V	ĸ
75						 Liquid L	imit :	Ma	-	Device	<u>`</u>
(%)						Apparat	us No.		chanical	Х	
Vater Content, w (%)						Casagran		Met		Х	ĸ
ent						Groovin	g 1001:	Plas	stic		┛┃
6 5							SPEC	IMEN	PREPARAT	ON	ר ו
er C						Wet :			on #40 Sieves]
06 Xat						Dry (Air Dry (Ov			ve on #40 Sieve Pushed Through	×	×
>									Removed Med	ium Plus	-
55						Sand Par	rticles				
									ng Water :	1 1	_
50						Distille	ed:	Dem	ineralized	Other:	
5				50		Liau	iid Lin	nit, LL	(%) No	n-Plastic	
		Numb	per of Blow	S				-)			
				PLASTIC		-			-	_	
TE	ST NO.		1	2	3	4		5	6	7	
Mass of wet soil	+ container	σ									
Mass of dry soil		g g									
Mass of containe	er	g									
Mass of moisture	2	g									
Mass of dry soil		g									
Moisture content Plastic Limit, P		g			N	on-Plastic					
Tastic Linnt, T	L (/0)				14						
Plasticity Index.	, PI (%)				N	on-Plastic					
* All labora	tory test results rela	te only on the i	items tested ar	nd this report shall 1	not be reproduced e	except in full an	d with p	rior appr	oval of this Lab	oratory.	
Remarks:		-		•	•	•				·	
Tested by:	R. Cagu	iin	_								
Checked by:	E. Segism	undo	_	Approved	by: <u> </u>	Krasovec					

Project Name	: Proposed U	OG Enginee	ring Bui	lding					
Project No.:	210040	Client:	SSFM	Internationa	l		Ι	Date: 14	-Feb-22
Location: N	Mangilao, GU				Depth:	35.00-36	6.50 ft Sa	mple No.:	B-05/S-11
TEST METH	IOD								
				LIQUID L					
	TEST NO.		1	2	3	4	5	6	7
Initial gauge rea		mm mm							
Average Penet		mm						-	1
Container no.									1
Mass of wet so		g							
Mass of dry so		g							
Mass of contai Mass of moist		g							
Mass of dry so		g g							
Moisture conte		g %							
Number of Blo		-							
80									(APP)
80						ר ⊢	TESTING	EQUIPMENT U Hand Rolled	SED
						Plastic	Limit :	Mechanical Rolling	Device X
75						Liquid	Limit :	Manual	
%)						Appara		Mechanical	X
Vater Content, w (%)						Casagra Groovi	ande ng Tool:	Metal Plastic	X
ten									
6 5								EN PREPARATI	ON
ter						Wet : Dry (A		shed on #40 Sieves Sieve on #40 Sieve	x
60 × 8						Dry (O		ch. Pushed Through	^
								e and Removed Medi	ium Plus
55						Sand Pa		Mixing Water :	
						Distil		Demineralized	Other:
50						Distil	icu.	Demineralized	Ouler.
5		Numbo	r of Blows	50		Liq	uid Limit,	LL (%) No	n-Plastic
		Number	I UI BIUWS						
	TEST NO.		1	PLASTIC I		4	5		7
	IESI NO.		1	2	3	4	5	6	/
Mass of wet so	oil + container	g							
Mass of dry so	il + container	g							
Mass of contai		g							
Mass of moist		g							
Mass of dry so Moisture conte		g g							
Plastic Limit,		5			N	on-Plastic	, ,		
Plasticity Inde	ex, PI (%)				N	on-Plastic			
* All lab	oratory test results rela	te only on the iter	ns tested and	d this report shall no	ot be reproduced e	except in full a	nd with prior	approval of this Labo	oratory.
Tested by:	R. Cagu	iin							
Checked by:	E. Segism	undo		Approved b	y: <u> </u>	Krasovec			

Project Name: Proposed UOG Engineering Building									
Project 1		Clie		1 Internation			Da		4-Feb-22
Location	n: Mangilao, GU -	Near St	ormwater Po	ond	Deptl	n: 4.50-4.9	02 ft Sam	ple No.:	B-06/S-4
TEST N	TEST METHOD								
			1	LIQUID				(
Initial ga	TEST NO. uge reading	mm	1	2	3	4	5	6	7
Final gau	ige reading	mm							
Average	Penetration	mm							
Containe								_	
	wet soil + container dry soil + container	g g							
Mass of		g g							
Mass of a	moisture	g							
Mass of	dry soil	g							
Moisture Number		%							
i (unio di	of Bioms								
80						$\neg \square$		QUIPMENT	USED
						Plastic	limit ·	and Rolled lechanical Rollin	g Device X
75						Liquid		anual	
(%)								lechanical	x
ب 70 آ						Casagi Groov		letal astic	X
iten							8		
Water Content, w (%) 09 29 02						Wet		N PREPARAT ed on #40 Sieves	
ater						Dry (A		ieve on #40 Sieves	
× 60						Dry (C		Pushed Through	
							on Glass Plate a Particles	nd Removed Med	lium Plus
55								xing Water :	
50						Disti	lled: De	mineralized	Other:
	5			50)				
		Nu	mber of Blows	S		Lic	luid Limit, L	L(%) NC	on-Plastic
				PLASTIC	LIMIT				
	TEST NO.		1	2	3	4	5	6	7
Magg of	wet soil + container	a							_
	dry soil + container	g g							
Mass of	container	g							
Mass of		g							
Mass of Moisture	dry soil	g g							
Plastic I	Limit, PL (%)	5				Non-Plasti	c		
							_		
Plasticit	y Index, PI (%)					Non-Plasti	C		
	* All laboratory test results rel	ate only on t	he items tested an	d this report shall	not be reproduce	d except in full a	and with prior ap	proval of this Lab	ooratory.
Remark	s:								
Tested b	y: R. Cag	uin	_						

Approved by: T. Krasovec

Project N	ame: Proposed U	OG Eng	ineering	Building					
Project N		Clie		SFM Internatio					4-Feb-22
Location:	Mangilao, GU -	Near Sto	ormwate	er Pond	Dept	h: 9.00-9.4	2 ft Sa	mple No.:	B-06/S-7
TEST M	ETHOD								
				LIQUID		· .	-		
T 1	TEST NO.		1	2	3	4	5	6	7
Initial gau Final gaug	ge reading	mm mm							
Average P		mm							
Container									
	et soil + container	g							
	ry soil + container	g							
Mass of co		g							
Mass of m		g							
Mass of di Moisture c	ry soil	g %							
Number of		%0 -		-					
	1 DIOWS	-							
80							TESTING	EQUIPMENT	USED
						Plastia	Limit :	Hand Rolled	
75								Mechanical Rollin	ng Device X
						1	Limit :	Manual Mechanical	X
Water Content, w (%)						Casagr	itus No. ande	Metal	X
07 ×							ng Tool:	Plastic	~
Iter									
6 5								EN PREPARA'	
er						Wet : Dry (A		shed on #40 Sieve Sieve on #40 Sieve	
09 Xai						Dry (A	,	ch. Pushed Throug	
-								and Removed Me	
55						Sand P	articles		
							1	Mixing Water :	
50						Distil	led:	Demineralized	Other:
50 -				50	D				
-		Nu	mber of B	lows	-	Liq	uid Limit,	LL (%) N	on-Plastic
				PLASTIC	TIMIT				
	TEST NO.		1	2	3	4	5	6	7
	1201 1001							Ű	,
Mass of w	et soil + container	g							
	ry soil + container	g							
Mass of co		g							
Mass of m		g							
Mass of di		g							
Moisture c Plastic Li	mit, PL (%)	g				Non-Plastie	C		
I lastic Li	init, 1 L (70)					Holl I laoti	0		
Plasticity	Index, PI (%)					Non-Plasti	C		
	All laboratory test results rela	ate only on t	ne items test	ed and this report shall	not be reproduce	ed except in full a	nd with prior	annroval of this I a	boratory
Remarks:		ate only on a	ie items test	eet and this report shar	not be reproduce	sa except in fan a	and what prior a	approval of unit La	boratory.
Tested by:	R. Cagi	uin							
Checked b	oy: <u> </u>	undo		Approved	l by:1	r. Krasovec			

ANNOUCEMENT REGARDING THE LOCATION OF THE PPC:

The location started in JELG-SBPA Room 261; until 10:15 A.M. when there were more attendees than the room could accommidate. The PPC was moved to SBPA's Room No. 131 downstairs. The signage on the door of room 261; stated that the PPC was continuing in Room 131.

UOG REPRESENTATIVES PRESENT Emily Gumataotao, Supply Management Adminstrator	PROCUREMENT OFFICE	Office: E-Mail:	(671)735-2925, eggumataotao@triton.uog.edu procurementoffice@triton.uog.edu
Glenn Leon Guerrero,	FACILITIES MANAGEMENT	Office:	(671) 735-2376 or 735-2375
Director	& SERVICES OFFICE	E-Mail:	glennlg@triton.uog.edu
Sandra McAuliffe,	FMS	Office:	(671) 735-2377
Program Coordinator II		E-Mail:	smcauliffe@triton.uog.edu
Bernard S. Benavente,	FMS	Office:	(671) 735-2375
Resident Inspector		E-Mail:	nbtguam@gmail.com
Dr. Jeffrey Y. Cheng, Ph.D., P.E.	SCHOOL OF ENGINEERING	Office:	(671) 735-7695 or (671) 777-8257
Associate Professor of Civil Engineering		E-Mail:	chengc@triton.uog.edu
Ernesto J Guades, Ph.D., P.E.	SCHOOL OF ENGINEERING	Office:	(671) 671-735-1822
Assistant Professor of Civil Engineering		E-Mail:	guadese@triton.uog.edu
Cathleen Moore-Linn,	RESEARCH CORPORATION	Office:	(671) 735-0250
Executive Director	OF UOG	E-Mail:	cmoore@triton.uog.edu
Katrina Perez,	UOG ENDOWNMENT	Office:	(671) 735-2956/482-1213
Executive Director	FOUNDATION	E-Mail:	katrina@uogendowment.org

NOTICE:

At the end of the PPC, several companies were reviewing the contact tracing sheets to ensure their company was properly listed. However, these ¹contacting tracing sheets went missing. Perhaps, accidentially picked up by someone along with their documents. The University respectfully requests for all attendees to please check their handouts or documents they had with them during the Pre-Proposal Conference to see if the contact tracing sheets are among them. In the meantime, only copies of the ²additional contact sheets (provided by FMS) will be provided with this Minutes.

INTERESTED ATTENDEES:

Attendees were asked to fill-out the (1) UOG SBPA Contact Tracing Sheet and (2) FMS provided additional notebook sheets for each company to provide in greater detail the names of their assigned personnel, their contact numbers, and good e-mailing addresses; because Amendment No. 2 for this RFP was currently being drafted. Distribution was being planned for next week Tuesday (03/15/22). If you have not seen Amendment No. 2 or the MINUTES for this PPC by then; please go ahead and contact the Procurement office to verify your email addresses is on the registry.

	COMPANY NAME	REPRESENTATIVE	CONTACT INFORMATION	
1.	IAN CORPORATION	John Valentine Jun Park	Cell: (671) 988-1222 Tel.: (671) -	E-Mail: JTValentine@ianconstruction.com E-Mail: junpark@ ianconstruction.com
2.	GHD	Aaron Sutton	Tel.: (671) 472-6792	E-Mail: aaron.sutton@gmail.com
3.	RIM ARCHITECTS	Brent Wiese	Cell: (671) 988-3629	E-Mail: bwiese@rimarchitects.com
4.	PACIFIC RIM CONSTRUCTION	Arniel Torres	Cell: (671) 988-8818	E-Mail: atorres@pacificrimc.net
5.	ORION CONSTRUCTION	Philsan Kim	Cell: (671) 788-6666	E-Mail: philsan.kim@orion-guam.com
6.	RELIABLE BUILDERS, INC.		Cell: (671) 888-3811	E-Mail: jmagtoto@reliablebuildersguam.com
			Cell: (671) 482-4322	E-Mail: tricon0624@gmail.com
7.	DESIGN PARTNERS, INC.	Sonny Rosal	Cell: (671) 988-7827	E-Mail: sonny.rosal@designpartnersinc.com
8.	UNITED MECHANCIAL		Cell: (671) 488-6788	E-Mail: rgc.united_mechancial@hotmail.com
9.	CANTON /	Bobby Ycng	Cell: (671) 685-3046	E-Mail: bobby.ycng@guamcanton.com
	AMERICAN BUILDER	Ronald Su	Cell: (671) 688-8100	E-Mail: ronaldsu@harvestguam.com
10.	AMORIENT ENGINEERING	Hernan	Cell: (671) 482-3309	E-Mail: hernan@amorient.com
11.	TANIGUCHI, RUTH	Michael Makio	Cell: (671) 727-8772	E-Mail: mmakio@traguam.com
10	& ASSOCIATES	Danala Maraa	0.11. (071) 000 0000	
12.	PACIFIC RIM CONSTRUCTION	Derek Moss	Cell: (671) 929-2899	E-Mail: dmoss@pacificrimco.net
13.	SMCCGUAM	Mark Anthony Ancheta	Cell: (671) 898-0665	E-Mail: m.ancheta@smccguam.com

UOG RFP NO. P22-02: DESIGN-BUILD CONSTRUCTION SERVICES FOR A NEW SENG MARCH 11, 2022 (F) 10:00 AM PRE-PROPOSAL CONFERENCE (PPC) MINUTES (Prepared on 03/16/2022) Page 2 of 4

DISCUSSIONS:

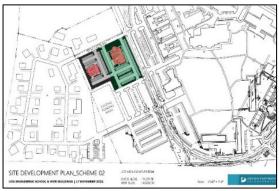
- 1. All attendees were informed that the PPC is being recorded. Everyone was asked to introduce themselves.
- 2. All questions answered today are not official please submit your questions officially in writting to the procurement office; and your questions will be officially answered (under a Q&A Sheet); but we will attempt to answer what we can today.

05

States of the second

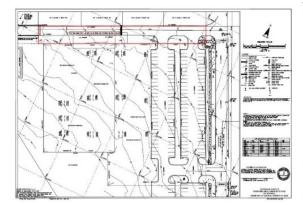
- 3. The University will be issuing <u>Amendment 2</u> next week to distribute the Soil Report and Topo information prepared by SSFM International, Inc. which was received on March 10, 2022.
- 4. The following handouts (11" X 17" sheets) were provided to those in attendance:

Handout 1: <u>Site Development Plan</u> for the new SENG Site.


Handout 2: Survey Topo provided by SSFM International.

#! !#

BAR ARIE


影演

s: ; ;

Handout 3:

Property Map with Easement Outline on Survey Topo map provided by SSFM.

Handout 4: Excerts from the <u>Geotechnical Engineering Assessment</u> for SENG, 03/09/22, prepared by OYO Pacific on behalf of SSFM International (Job No. 210040); pages 30 & 31 below.

5. The <u>Director of UOG Facilities Management & Services</u> (Mr. Glenn Leon Guerrero) discussed that this solicitation is a "Design-Build" Construction Services project that may be funded under UOG-EF's loan application with the USDA Community Facilities Loan Program. The size of the proposed facility is approximately 16,000 square feet within a 2-story envelope, with a <u>"Maximum Guartanted Price."</u>

Attendees were advised about the upcoming new WERI building under an EDA grant and how the two (2) buildings were adjacent to each other. However, the site for the proposed SENG building has two (2) options; face University Drive/J.U. Torres Drive or Alstrom Circle (aka Dean Circle). He further discussed that the clock on the USDA loan started on September 2020 and that the D/B construction would have to be completed within 5 years from that date.

- 6. Two (2) professors from SENG were in attendance. Dr. Cheng discussed SENG's preferred facility setup. He stated the research laboratories should be on the first floor and the regular classrooms and offices should upstairs.
- 7. Attendees were invited to participate in the *Site Visit* afterwards. Around 11:00 AM, or ten (10) minutes after this PPC (*if you are interested*); meet in the vacant lot between UOG's *English Language Institute* (ELI) paved parking lots and the paved parking lots across the street from the UOG CLASS buildings.

- 8.
- Below, is a snap shot of those who participated in the Site Visit; and the Site Visit was adjourned.

